Measuring the Impact of Big Data Adoption on Firm Performance in Large and Medium-Sized Retail Enterprises in Post-Communistic Environment

A project/thesis submitted to the Faculty of Ilia State University Business, Technology and Education Business School in fulfilment of the requirements for the degree of Master of Business Administration

Thesis Supervisor:

Davit Tutberidze

Ilia State University T'bilisi 2025

Declaration

As the author of this paper, I declare that this thesis presented for the degree of Master of Business Administration is an original report of my research and has been written by me. Due references have been provided on all supporting literature and resources. I also confirm that this work has not been submitted for any other degree or professional qualification. Some of the work described in this thesis, which was later revised, had been written and submitted in the courses Research Methods and Academic Writing for MBA at Ilia State University Business School (June, 2024).

Aleksandre Iremashvili May 31, 2025 Signature:

Table of Contents

Declaration	1
Table of Contents	2
List of Figures and Tables	5
List of Abbreviations	6
Abstract	8
Acknowledgement	9
1. Introduction	1
2. Literature Review	5
2.1. The Big Data	5
2.2. Concerns Regarding Privacy	6
2.3. Commonly Adopted Research Designs	7
2.4 Theoretical Frameworks and Models	9
2.5. Resource-Based View and Technology-Organisation-Environment Framework	10
2.5.1. Hypotheses	10
3. Methodology	17
3.1. Research Design	17
3.1.1. Sampling	17
3.1.2. Data Collection	17
3.1.3. Statistical Technique	18
3.1.3.1. Assessment of the Measurement Model	18
3.1.3.2. Assessment of the Structural Model	20
3.2. Methodology Advantages and Limitations	23
3.3. Summary	23

4. Results	25
4.1. Model 1 (M1)	25
M1 Assessment of the Measurement Model	25
M1 Confirmatory Factor Analysis and Outer Loadings	25
M1 Discriminant Validity	27
M1 Assessment of the Structural Model	30
M1 Collinearity	30
M1 Significance and Relevance	33
M1 Explanatory Power	34
M1 Predictive Power	35
4.2. Model Refinement	35
4.3. Model 2 (M2)	36
M2 Assessment of the Measurement Model	36
M2 Confirmatory Factor Analysis and Outer Loadings	36
M2 Discriminant Validity	38
M2 Assessment of the Structural Model	41
M2 Collinearity	41
M2 Significance and Relevance	43
M2 Explanatory Power	44
M2 Predictive Power	44
4.4. Model Comparison	45
5. Discussion	46
5.1. Model Modifications	46
5.2. Data Analysis	48
5.3. Hypothesis Testing	50
6. Conclusion	51

	6.1. Recommendations	.52
	6.2. Limitations and Further Research	.53
7	. Bibliography:	.55
8	. Appendices:	.67
	Appendix 1	.67

List of Figures and Tables

Figure 1.1 Georgian GDP structure in 2023 (Source: https://www.geostat.ge/, accessed on 14	
October 2024)	2
Figure 2.3.1 Distribution by year of review and research articles containing the term "Big Data"	in
Ilia State University EBSCO Discovery Service database (accessed on 21 April 2024)	8
Figure 2.5.1 A visual representation of the hypothesised relationships	16
Table 3.1.2.1 Summary of Data Collection	18
Figure 3.1.3.1.1 Reflective measurement model assessment procedure. (Source: Hair et al., 2021	l) 2 0
Figure 3.1.3.2.1 Structural model assessment procedure. (Source: Hair et al., 2021)	22
Figure 4.1.1 M1 Confirmatory factor analysis	25
Table 4.1.2 M1 Loadings lower than 0.6	26
Table 4.1.3 M1 Construct Reliability and Convergent Validity	27
Table 4.1.4 M1 Heterotrait-monotrait (HTMT) ratios	30
Table 4.1.5 M1 Variance inflation factors (VIFs)	33
Table 4.1.6 M1 Results of the Hypothesis Testing of the Relationship. Note: Significant at * p	> <
0.10, **p < 0.05 and ***p < 0.01 (one-tailed test).	34
Table 4.1.7 M1 Predictive power	35
Figure 4.3.1 M2 Confirmatory factor analysis	37
Table 4.3.2 M2 Construct Reliability and Convergent Validity	38
Table 4.3.3 M2 Heterotrait-monotrait (HTMT) ratios	41
Table 4.3.4 M2 Variance inflation factors (VIFs)	43
Table 4.3.5 M2 Results of the Hypothesis Testing of the Relationship. Note: Significant at * p	> <
0.10, **p < 0.05 and ***p < 0.01 (one-tailed test)	44
Table 4.3.6 M2 Predictive power	45
Figure 5.2.1 Guidelines for interpreting PLSpredict results (Source: Shmueli et al. 2019)	49

List of Abbreviations

3V	Three V's (Volume, Velocity, Variety)
AGI	Artificial General Intelligence
AI	Artificial Intelligence
AIC	Akaike information criterion
BD	Big Data
BDA	Big Data Analytics
BIC	Bayesian information criterion
CR	Composite Reliability
CVPAT	Cross-Validated Predictive Ability Test
DOI	Diffusion of Innovations
DVAR	Data Variety
DVEL	Data Velocity
DVER	Data Veracity
DVOL	Data Volume
GR	Government Regulations
HTMT	Heterotrait-monotrait (ratio)
M1	Model 1
M2	Model 2
OR	Organisational readiness

PDPS	Personal Data Protection Service
PLS-SEM	Partial Least Squares Structural Equation Modelling
RA	Relative Advantage
RBV	Resource-Based-View
SME	Small and medium-sized enterprises
SOE	Small Open Economy
TAM	Technology Acceptance Model
TMS	Top Management Support
ТОЕ	Technology-Organisation-Environment
UTAUT	Unified Theory of Acceptance and Use of Technology

Abstract

This study addresses a critical knowledge gap by investigating Big Data Adoption (BDA) within large and medium-sized retail enterprises operating in the post-Soviet economic context, with a particular focus on the Georgian market. By identifying key drivers of BDA adoption and exploring its performance implications in this specific setting, the research enriches the understanding of BDA within this under-researched domain. The research design incorporates a pragmatic philosophical approach, focusing on the practical application of knowledge to address real-world challenges in data analysis and retail operations. The study is grounded in a deductive approach and formulated hypotheses based on the Technology-Organisation-Environment (TOE) framework and Resource-Based View (RBV) theory. Employing a quantitative approach, this study utilises a reflective measurement model, specifically Likert scale questionnaire, and leverages a digital survey for data collection. SmartPLS version 4.0 was used for the Partial Least Squares Structural Equation Modelling (PLS-SEM) statistical analysis. Key findings indicate that factors such as relative advantage, data volume, and top management support significantly impact Big Data adoption, subsequently influencing the firm's performance. The study confirms the importance of robust data analytics capabilities and provides recommendations on how companies can optimally adopt BDA in their organisations.

Keywords: Big Data Analytics Adoption, Firm Performance, Large and Medium-sized Retail Enterprises, Post-Soviet, PLS-SEM, Georgia.

Acknowledgement

The author assumes sole responsibility for the research, including its limitations. Sincere gratitude is extended to all professionals who contributed to the study by completing the questionnaire. The author would like to express particular appreciation to Professor Akaki Liqokeli for their invaluable mentorship and guidance during the Quantitative Methods and Advanced Quantitative Methods courses. This invaluable support enabled the author to independently learn the methodology employed in this thesis. Furthermore, the author would like to thank Nino Pataraia for her immense support throughout the learning process. Additionally, the author would like to express sincere gratitude to David Tutberidze for their contributions to this thesis, which significantly enhanced its clarity and impact. Finally, the author would like to thank his wife Ana for always pushing him to be the best version of himself.