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Global-Scale Rossby Waves on Stars

Abstract

Rossby waves (r-modes) arise due to the conservation of absolute vorticity on rotating spheres.
The waves govern the large-scale dynamics of the Earth’s atmosphere/oceans and have been inten-
sively studied during decades. Recent discovery of the waves on the Sun and other stars revived
the interest towards theoretical investigation of the wave properties in different astrophysical situ-
ations. This thesis aims to study the dynamics of the Rossby waves in solar/stellar interiors.

The influence of the latitudinal differential rotation and viscosity on the Rossby waves was
studied using 2-dimensional beta-plane approximation on the Sun. Our results showed that the
velocity eigenfunctions have a singularity at the critical latitude where the phase speed of the
Rossby wave equals with the latitudinal differential rotation. Without viscosity, the eigenvalues
are real and continuous, while they become discrete and complex in the presence of viscosity. For
Reynolds number of ∼ 300, the attenuation and the real part of eigenfunctions are in qualitative
agreement with the solar observations. Each longitudinal wavenumber is associated with a latitudi-
nally symmetric Rossby mode trapped at low latitudes by solar differential rotation. In the viscous
model, Rossby modes transport significant angular momentum from the dissipation layers toward
the equator.

We also studied the Rossby waves in the interiors of uniformly rotating stars with radiative
envelopes in the presence of the vertical stratification of the temperature. The initial 3-dimensional
linear hydrodynamic equations were separated into vertical and horizontal parts using traditional
approximation with a separation constant, which actually is the equivalent depth of the Rossby
waves. The vertical structure of the Rossby waves was found to be governed by the Bessel func-
tions and strongly dependent on the vertical temperature gradient. Surface boundary conditions
allowed us to obtain the discrete values of the equivalent depth, which correspond to the discrete
vertical modes. It is found that the vertical modes are concentrated in the near-surface layer with
a thickness of several tens of surface density scale height. Then the obtained equivalent depth
was used to solve the horizontal structure equations and the corresponding dispersion relations for
Rossby, Rossby-gravity, and inertia-gravity waves were obtained. The solutions were found to be
confined around the equator leading to the equatorially trapped waves. It was shown that the wave
frequency depends on the vertical temperature gradient as well as on the stellar rotation. There-
fore, observations of wave frequency in light curves of stars with known parameters (radius, surface
gravity, rotation period) could be used to estimate the temperature gradient in stellar outer layers.
Consequently, the Rossby mode may be considered as an additional tool in asteroseismology apart
from acoustic and gravity modes.
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1 Introduction

1.1 Basics of Rossby waves

Rossby waves appear as large-scale waves in rotating fluids, whose frequency is
several times less than the rotation frequency of the fluids. The waves essentially
govern the global weather system of the Earth. Therefore, Rossby-type waves
have been studied for decades, especially in the context of the Earth’s atmosphere
and oceans. For this reason, they are often called planetary waves (the waves are
also called r-modes in astrophysical contexts). The waves were first identified by
Carl-Gustaf Rossby; a Swedish oceanologist and meteorologist who was working
on a long-range weather forecasting project at the Massachusetts Institute of Tech-
nology and the US Weather Bureau. During the study, he created 7-day and later
5-day mean charts for the pressure on the sea level and for the isentropic contours.
This research together with Kelvin’s circulation theorem became an inspiration for
Rossby to describe the large-scale atmospheric dynamics in terms of the conserva-
tion of absolute vorticity (a sum of planetary and relative vorticities) on a rotating
sphere, which forces the waves to propagate in the retrograde (opposite direction
of the rotation) direction (Rossby, 1939).

The fluid vorticity is a curl of the flow velocity, v⃗, i.e. ω⃗ = ∇× v⃗. Consequently,
the vorticity of a uniformly rotating sphere, i.e. planetary vorticity, is defined as
2Ω⃗, where Ω⃗ is the angular velocity of the sphere. The absolute vorticity in the
inertial frame thus can be written as ω⃗a = 2Ω⃗ + ω⃗, where ω⃗ is a vorticity in the
rotating frame (relative vorticity). Due to the preferred direction of the rotation
axis, the planetary vorticity is the function of the latitude being maximal at the
poles and 0 at the equator. Therefore, the conservation of absolute vorticity yields
the variation of relative vorticity with the latitude. The absolute value of plan-
etary vorticity can be written as Coriolis parameter, f = 2Ω sin θ, where θ is a
latitude. Therefore, the Coriolis force is an essential component of the Rossby
waves. The Coriolis force was named after Gaspard-Gustave de Coriolis, who
first described the force in the context of the water wheels. Coriolis force arises
in rotating frames, acts only on the moving bodies, does not do any work and de-
flects the motion at right (left) angles in the northern (southern) hemisphere. This
is called the Coriolis effect. For example, when the fluid moves from the equator
towards the poles it experiences eastward displacement, and the fluid moving to-
wards the equator displaces westward. In order to conserve the absolute vorticity,
the fluid gains a relative vorticity, which returns it to the starting point - Fig.1.
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Figure 1: Graphical illustration of retrograde motion of Rossby wave due to the conservation of
absolute vorticity. The figure is reproduced from Dikpati et al. (2018b) by permission of the AAS

The Coriolis effect is crucial for producing Rossby waves. The parameter,
which shows the importance of rotation with regards to the inertial motions, is
called Rossby number: Ro = V/2ΩL, where V and L are the characteristic veloc-
ity and the length scale of fluid motions, respectively. A smaller Rossby number
yields a stronger influence of rotation on the dynamics of the system.

The phase and group velocities of the Rossby waves have a retrograde and
prograde direction, respectively. In the case of a uniform jet with velocity U, the
phase and group velocities can be written as:

cphase = U −
βλ2

4π2 , (1)

cgroup = U +
βλ2

4π2 , (2)

where λ is a wavelength. Here β = ∂ f /∂θ = 2Ωcosθ/R with R being the radius
of the sphere characterizes the latitudinal variation of the Coriolis parameter. For
each value of U, there is the critical value of the wavelength λ = 2π

√
U/β, for

which the waves become stationary, i.e. they do not have any displacement with
regards to the Earth’s surface.

The theoretical background of the Rossby waves has been developing for cen-
turies since Hadley (1735). Laplace’s (Laplace, 1893) tidal equations lead to

6
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the basic mathematical descriptions of the waves, while Hough (Hough, 1897,
1898) found the solutions of Laplace’s equations in terms of Legendre functions
for Rossby-type waves (low-frequency waves in Hough’s notation). A linearized
system of the main equations (equations of motion, continuity, and energy) needs
to be solved with appropriate assumptions. The analytical solutions for Rossby
waves were found with different approximations, but the easiest one is related
with only horizontal motion i.e. two-dimensional models with an incompress-
ible fluid. This model provides solutions for two-dimensional Rossby waves and
demonstrates key properties associated with these waves. The model incorporates
the beta-plane approximation, which has been extensively utilized to investigate
the large-scale dynamics of Earth’s atmosphere and oceans. The crucial assump-
tion of the approximation is that the scale of perturbations must be significantly
smaller than the radius of the sphere. The beta-plane approximation in a 2D model
yields the harmonic solutions with the dispersion relation:

σ = kxU −
kxβ

k2
x + k2

y
, (3)

where σ is the wave frequency and kx (ky) is the toroidal (poloidal) wavenum-
ber. However, for larger-scale perturbations, the curvature of the Earth’s surface
must be taken into account. In this case, the conservation of absolute vorticity in
spherical coordinates leads to the Legendre equation (Haurwitz, 1940), which has
bounded solutions in terms of Legendre polynomials. The corresponding disper-
sion relation for Rossby waves without a background flow is:

σ = −
2mΩ

l(l + 1)
. (4)

m is an angular order (same as the toroidal wavenumber) and denotes the number
of zeros around the equator in spherical harmonics. On the other hand, l is a degree
and shows the number of nodes on a full spherical surface. When l is fixed and
m , 0 (|m| < l), then the solutions are tesseral spherical harmonics. There are no
nodal meridians for m = 0, therefore these are zonal harmonics. For l = |m| there
are no nodes between the poles, and the solutions are called sectoral harmonics.

The 2D model contains the basic physical properties of the Rossby waves, how-
ever, the real picture is much more complicated and the vertical stratification needs
to be taken into account. Stratified fluids yield a non-uniform vertical density dis-
tribution due to gravity. In this scenario, the pressure may stay hydrostatic for a
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small Rossby number. This assumption is common in studying geophysical and
astrophysical flows.

In order to describe a stratified fluid, a shallow water model has been used since
Laplace’s (Laplace, 1893) tidal theory. There are certain conditions that need to
be satisfied to consider a shallow water system. First of all, a fluid layer thickness
must be much smaller than the scales of horizontal perturbations: H/L ≪ 1, H is
the width of the layer and it should correspond to the density scale height (to be
less or equal to the scale height). Furthermore, inside the layer the density must
be uniform and the pressure must be hydrostatic.

To investigate the properties of Rossby waves within a shallow water approx-
imation, one can write Laplace’s equations using a Cartesian coordinate system
(Longuet-Higgins, 1965). These equations system has high and low-frequency
solutions. The dispersion relation and the solutions depend on the Coriolis pa-
rameter. Away from the equator, βy ≪ f and the dispersion relation of the waves
becomes

σ = −
kxβ

k2
x + k2

y + f 2
0 /c2

. (5)

Here, kx (ky) is a toroidal (poloidal) wavenumber, c =
√

gH is the surface gravity
speed and f0 is the Coriolis parameter at the fixed latitude (g is the gravitational
acceleration). When the scale of horizontal perturbations is much smaller than
the Rossby radius of deformation (kx, ky ≫ f0/c), then this dispersion equation
transforms into the 2D version (Eq. 3).

In the equatorial area, the Coriolis parameter can be approximated as f ≈ βy.
Then the Laplace tidal equations lead to the parabolic cylinder (the equation of
quantum harmonic oscillator) equation. It has bounded solutions in terms of Her-
mite polynomials (e.g. Matsuno (1966)), which decrease exponentially towards
the poles. The solutions strongly depend on the Lamb parameter and order of the
Hermite polynomial. The Lamb parameter

ε =
4Ω2R2

gH
(6)

characterizes shallow water systems. When this parameter is large, then the waves
are trapped near the equator and they are called equatorial or equatorially trapped
waves. The Rossby wave dispersion equation near the equator is described by the
formula

8



Global-Scale Rossby Waves on Stars

σ = −
kxβ

k2
x + (2n + 1)β/c

, (7)

where n = 0, 1, 2, .. is the order of Hermite polynomial and is equivalent to the
l − |m| quantity in spherical harmonics, that is the number of nodes between the
poles. Hence, n = 0 corresponds to the sectoral harmonics l = |m|.

If the wavelength of the equatorially trapped Rossby waves is large enough,
then the dispersion relation can be rewritten as:

σ ≈ −
kxc

2n + 1
, (8)

which shows that in shallow water system, the dynamics of the waves strongly
depend on the gravitational acceleration and the width of the shallow layer.

In order to compare how spherical geometry changes the dispersion equation of
the Rossby waves near the equatorial region, the solutions in spherical coordinates
must be found (Longuet-Higgins, 1965). Laplace’s tidal equations in spherical ge-
ometry have been solved analytically by expanding Legendre functions by Hough
(Hough, 1897, 1898). Obtained dispersion equation depends on value of the Lamb
parameter and in case of large ϵ it can be written as

σ ≈ −
2mΩ

(2n + 1)
√
ϵ
= −

mc
(2n + 1)R

. (9)

The equation is exactly the same as Eq.(8) for rectangular geometry replacing kx

by m/R. It is clear, that the spherical and rectangular coordinates do not give
any difference in dispersion relation of equatorially trapped Rossby waves. There-
fore, using rectangular coordinates in the equatorial β plane approximation is com-
pletely justified if we confine the analysis to low latitudes.
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1.2 Stars

Stars are astrophysical objects where the matter is held together by self-gravity.
They are born in the interstellar gaseous nebulae or molecular clouds. The mat-
ter start to collapse, which is a mandatory process for stellar formation, the Jeans
criteria must be satisfied. If the mass is high enough, then the nebula breaks into
smaller and denser parts. The temperature and pressure increase and the fragment
forms as a rotational matter. The process continues before the matter starts adi-
abatic contraction, it gets rid of the extra fragments and forms an object called a
protostar. The further evolution of protostars fully depend on their masses Fig.2.

Figure 2: Stellar evolution chart, from birth to the remnant. Credit: NASA and the Night Sky
Network.

The protostars with a mass of approximately 0.08M⊙ (M⊙ denotes a solar mass
2 × 1030 kg) never reach the stage of nuclear fusion and they end up as brown
dwarfs, the lowest right-hand side area in the Hertzsprung-Russel diagram (HRD).
More massive protostars begin the nuclear reactions and move to the main se-
quence part of the HR diagram. The place of the stars in the diagram depends on
their spectral type. The place on HRD defines the surface temperature vs luminos-
ity relation of a star, which itself is determined by the mass. Mid-sized stars like

10



Global-Scale Rossby Waves on Stars

the Sun are called yellow dwarfs, they remain in the main sequence for approxi-
mately 10 billion years and are placed in the middle of the HRD. More massive
stars fuse hydrogen faster and are placed on the upper part on the main sequence
of HRD. They live much shorter comparing with solar-like stars.

Figure 3: The heat transfer inside stars with different masses. Massive stars (> 1.5M⊙) have inner
convective core and outer radiative envelope. The stars with average mass (0.5 − 1.5M⊙), such as
our Sun, have inner radiative and outer convective envelopes, and less massive stars (< 0.5M⊙)
stay convective. Source: www.sun.org

The Heat transfer (convective or radiative) inside a star is also defined by its
mass (Fig.3). Less massive stars with M < 0.5M⊙ stay almost fully convective.
Solar-like stars - 0.5M⊙ < M < 1.5M⊙ develop inner radiative zone and outer
convective envelope. Massive stars - M > 1.5M⊙ have a convective core and a
radiative outer shell.
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1.3 The Sun

The Sun is our nearest star. It is a G2V-type main sequence star formed approxi-
mately 4.6 billion years ago. It is in the middle period of its lifetime. Sun gener-
ates its energy through nuclear fusion in the core (burning hydrogen into helium),
where the temperature reaches ≈ 16 million K, while solar surface temperature
is only 6 000 K. The internal structure of the Sun consists of different layers and
the heat transfer mechanisms are distinct through each layer, accordingly (Fig.4).
The core is the central part of the Sun, where the main thermonuclear fusion re-
actions take place. It is the densest part of the Sun with a radius of 0.2 − 0.25R⊙
(R⊙ ≈ 7 × 105 km is a radius of the Sun). The energy radiated in terms of pho-
tons during nuclear reactions transfers to the next layer called as the radiative
zone with the thickness of ≈ 0.45R⊙, where the energy is transferred by radiation
i.e. photons are absorbed and re-emitted by atoms. The temperature and density
drop significantly at the top of a radiative zone so that the temperature gradient
approaches the adiabatic value. A slightly super-adiabatic temperature gradient
triggers convection near ≈ 0.7R⊙ and creates convection envelope, which extends
to the surface. The heat transfer occurs through convection in this region and the
temperature continuously reduces towards the surface (Fig.4). The solar atmo-
sphere starts above the surface consisting in the photosphere, the chromosphere,
and the corona. The photosphere is a visible surface that we can see on the Sun.
There is a temperature minimum layer at approximately 500km distance above the
solar surface, where the temperature reaches its minimum value of ≈ 4000K. The
temperature increases again with height reaching to 1-2 million K in the Corona.
All visible events take place in the solar atmosphere and observations provide us
with information over centuries.

The radiative and convective envelopes have qualitatively different rotation pro-
files. The radiative zone rotates as a solid body, while the convective envelope has
both vertical and latitudinal differential rotation. The solar synodic rotational pe-
riod at the equator is approximately 26 days, while it becomes ∼ 35 days at the
poles, i.e. the rotation rate differs with latitudes. Solar differential rotation is de-
scribed as:

Ω⊙ = Ω0 −Ω1sin2θ −Ω2sin4θ (10)

Where θ is a latitude, Ω0 is the solar angular velocity at the equator, while Ω1,
Ω2 are the coefficients obtained from the observations, which may change with the
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Figure 4: The solar structure: Internal layers and atmospheric configuration. Credit:
NASA/Goddard Space Flight Center

depth and with phase of solar cycles (Newton & Nunn, 1951; Timothy et al., 1975;
Snodgrass, 1984; Snodgrass & Ulrich, 1990; Brajša et al., 2001). The uniform
rotation exists from the center up to 0.7R⊙ and then the rotation starts to depend
both on the latitude and depth. The latitudinal differential rotation (or shear flows)
may have a strong influence on the processes in the solar surface and interior.
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1.4 Rossby waves on the Sun and stars

Rossby waves have been well described and observed in Earth’s atmosphere and
oceans for decades. As they are characteristic for rotating fluid systems, it was
expected that they would also appear in other astrophysical objects. Beyond the
Earth, the initial observations of Rossby waves in the solar system were predom-
inantly performed on Jupiter and Saturn. Detection of the waves in stellar atmo-
spheres is much more complicated. But the theoretical study of non-radial stellar
oscillations in terms of r modes was started since Papaloizou & Pringle (1978).
Then Provost et al. (1981) (see also Damiani et al. (2020)) studied r-modes in a
uniformly rotating star using perturbation analysis with the approximation of slow
rotation. Saio (1982) conducted research on r-mode oscillations in uniformly ro-
tating stars, incorporating perturbations of the gravitational potential. In recent
years, there has been considerable advancement in the theoretical understanding
of Rossby waves within the solar interior (Gizon et al., 2020; Bekki et al., 2022;
Dikpati et al., 2022).

Figure 5: Left panel: Rossby wave frequency vs toroidal wavenumebr, m, obtained with gran-
ulation tracking method byLöptien et al. (2018). The black solid line represents the theoretical
dispersion curve. Right panel: the period spacing (top) and amplitude spectra (bottom) for the γ
Dor star KIC 11907454 from Saio et al. (2018).

While the theoretical background of solar and stellar Rossby waves was devel-
oping for decades, there were only some attempts to observe the Rossby waves
on the Sun (Suess, 1971; Kuhn et al., 2000; Williams et al., 2007), but they were
largely not successful. Recently, Löptien et al. (2018) found Rossby wave patterns
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in the solar near-surface flows, whose dispersion relations was almost identical to
classical Rossby wave dispersion relation on uniformly rotation sphere (see the
left panel on Fig.5). In this work, the authors used 6 years of observational data
obtained by the SDO/HMI instrument. Classical Rossby waves can be identified in
horizontal velocity maps of the solar surface, where they appear as radial vorticity
patterns. Only sectoral modes with toroidal wavenumber 3 ≤ m ≤ 15 have been
found with the granulation tracking method. Different methodologies of obser-
vational data analysis such as helioseismology and granular tracking techniques
confirmed the existence of solar Rossby waves (Liang et al., 2019; Hanasoge &
Mandal, 2019; Proxauf et al., 2020; Gizon et al., 2021; Hanson et al., 2022).

On the other hand, recent space missions such as TESS (Transiting Exoplanet
Survey Satellite), CoRoT (Convection, Rotation and planetary Transit), and Ke-
pler have gathered an extensive amount of observational data. The data has en-
abled the identification of Rossby waves in the light curves of various stars. first,
Van Reeth et al. (2016) reported the signature of r-modes in Gamma Doradus stars
through analysis of Kepler data. Subsequently, the waves have been detected in
numerous stars mainly early type A, B, and F stars on a Hertzsprung-Russel dia-
gram. Rossby waves are related to the variation of the flow vorticity, but they also
cause pressure/density variations which makes it possible to detect r-modes in the
light curves of the stars. It has been suggested that r-mode frequencies appear as a
secondary peak in light curves, followed by the main peak which is believed to be
the rotational frequency of the star (Saio et al., 2018) (see the right panel on Fig.5).
It has been also suggested that the Rossby waves may lead to the observed short-
term stellar cycles (Lanza et al., 2009; Bonomo & Lanza, 2012; Gurgenashvili
et al., 2022).

It becomes increasingly clear that the Rossby waves have significant potential
to be used for probing stellar interiors (Aerts, 2021). Therefore, the theoretical
study of Rossby waves in solar/stellar interiors and consequent hint with observa-
tions is very important task in stellar astrophysics.
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2 Results
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2.1 Paper I: Rossby waves on stellar equatorial β planes: Uniformly rotating
radiative stars

M. Albekioni, T.V. Zaqarashvili, V. Kukhianidze, A & A, 671, A91, 2023

doi: https://doi.org/10.1051/0004-6361/202243985

Contribution: M. Albekioni contributed to solving the problem analytically as well as modeling the
results numerically. She provided the main scientific interpretation.

Abstract

Rossby waves arise due to the conservation of total vorticity in rotating flu-
ids and may govern the large-scale dynamics of stellar interiors. Recent space
missions have collected a lot of information about the light curves and activity of
many stars, which triggered observations of Rossby waves in the stellar surface
and interiors.

We aim to study the theoretical properties of Rossby waves in stratified interi-
ors of uniformly rotating radiative stars with a sub-adiabatic vertical temperature
gradient.

We used the equatorial beta-plane approximation and linear vertical gradient
of temperature to study the linear dynamics of equatorially trapped Rossby and
inertia-gravity waves in interiors of radiative stars. The governing equation was
solved by the method of separation of variables in the vertical and latitudinal di-
rections.

Vertical and latitudinal solutions of the waves are found to be governed by
Bessel functions and Hermite polynomials, respectively. Appropriate boundary
conditions at the stellar surface and poles define analytical dispersion relations
for Rossby, Rossby-gravity, and inertia-gravity waves. The waves are confined in
surface layers of 30-50 H0, where H0 is the surface density scale height, and they
are trapped between the latitudes of ±600. Observable frequencies (normalised
by the angular frequency of the stellar rotation) of Rossby waves with m = 1
(m = 2), where m is the toroidal wavenumber, are in the interval of 0.65-1 (1.4-2),
depending on the stellar rotation, radius, and surface temperature.

Rossby-type waves can be systematically observed using light curves of Kepler
and TESS (Transiting Exoplanet Survey Satellite) stars. Observations and theory
then can be used for the sounding of stellar interiors.
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1. Introduction

Rossby (planetary) waves are essential features of large-scale dynamics of ro-
tating fluids. The theoretical background for the waves was first explored by
Hadley (1735), while Laplace tidal equations created the basics for the mathe-
matical description (Laplace, 1893). Hough (1897, 1898) found the solutions of
the Laplace equations for the Rossby waves (low-frequency solution in Hough’s
terminology). However, the physical meaning of the waves was first described by
Rossby (1939): the waves arise due to the conservation of total vorticity (plan-
etary+relative) on a rotating sphere, which drives the propagating oscillations in
the opposite direction of rotation.

Rossby waves are well studied in the Earth’s context by observations and the-
ory. Westward propagating waves with a predicted phase speed have been continu-
ously observed in the terrestrial atmosphere (Hovmöller, 1949; Eliasen & Machen-
hauer, 1965; Yanai & Lu, 1983; Lindzen et al., 1984; Hirooka & Hirota, 1989;
Madden, 2007) and oceans (Chelton & Schlax, 1996; Hill et al., 2000). The the-
ory of terrestrial Rossby waves is also well studied (Haurwitz, 1940; Lindzen,
1967; Gill, 1982; Pedlosky, 1987). The detailed dynamics of the Rossby waves
in the Earth’s atmosphere and oceans is summarised in the reviews of Platzman
(1968) and Salby (1984).

Recent direct observations of Rossby waves in the solar surface (Löptien et al.,
2018) revived the interest for the study of Rossby waves on the Sun. The waves
were observed by different methodologies such as granular tracking and helio-
seismology (Liang et al., 2019; Hanasoge & Mandal, 2019; Proxauf et al., 2020;
Gizon et al., 2021; Hanson et al., 2022). The Rossby wave signature was also
found in the dynamics of solar coronal bright points (McIntosh et al., 2017; Krista
& Reinard, 2017). It was suggested that the magnetic Rossby waves may influ-
ence the short-term activity variations in the solar dynamo layer below the con-
vection zone (Zaqarashvili et al., 2010; Zaqarashvili, 2018; Dikpati et al., 2018,
2020). The Rossby waves are important in the dynamics of many astrophysical
objects such as Solar System planets, exoplanets, accretion disks, among others
(Zaqarashvili et al., 2021).

The recent space missions CoRoT (Convection, Rotation and planetary Tran-
sits), Kepler, and TESS (Transiting Exoplanet Survey Satellite) have collected a
lot of information about stellar light curves and activity. Van Reeth et al. (2016)
reported the detection of Rossby waves in rapidly rotating γ Dor stars in period
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spacing patterns. The pressure field of Rossby waves on the stellar surface may
influence their light curves as suggested by Saio et al. (2018), hence the waves
have been continuously observed in many Kepler stars with different spectral types
(Saio et al., 2018; Li et al., 2019; Jeffery, 2020; Samadi-Ghadim et al., 2020;
Takata et al., 2020; Henneco et al., 2021; Saio & Kurtz, 2022). Lanza et al. (2019)
show that the Rossby waves may represent a source of confusion in the case of
slowly rotating inactive stars that are preferential targets for a radial velocity planet
search. Therefore, the theoretical description of stellar Rossby waves is important
for stellar activity and exoplanetary research.

Rossby waves have been known as r modes in the stellar community since Pa-
paloizou & Pringle (1978). Provost et al. (1981) made significant progress in the
theoretical study of r modes in uniformly rotating stars by perturbation analysis
(see also Damiani et al. (2020) for a similar topic of study). Saio (1982) examined
the r-mode oscillations in the massive zero-age main sequence and ZZ Ceti stars.
The studies generally concerned the slowly rotating stars, which allowed for per-
turbation analysis by a small expansion parameter for slow rotation (we note that
Papaloizou & Pringle (1978) studied rapidly rotating stars, but for the high order
harmonics of r modes). On the other hand, it is of vital importance to study the
Rossby waves for stars with any rotation rate.

Here we aim to study the Rossby waves in stratified stellar interiors without ap-
proximation of slow rotation. We use the formalism of terrestrial Rossby waves,
which has been well tested in Earth’s atmosphere (e.g. Lindzen (1967)). The
formalism allowed us to derive the exact solutions and dispersion relations for
Rossby, Rossby-gravity, and inertia-gravity waves in rectangular equatorial beta-
plane approximation. The periods of different harmonics can be used for observa-
tions of the waves in stellar light curves. In this paper, we are concerned with the
radiative stars without an outer convection zone.

2. Governing equations

We started with linearised momentum, continuity, and energy equations in a
frame of a uniformly rotating star:

ρ0
∂v⃗
∂t
+ 2ρ0Ω⃗ × v⃗ = −∇p′ + ρ′g⃗, (11)

∂ρ′

∂t
+ (⃗v · ∇)ρ0 + ρ0∇ · v⃗ = 0, (12)
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∂p′

∂t
+ (⃗v · ∇)p0 + γp0∇ · v⃗ = 0, (13)

where v⃗ is the velocity, ρ0 (p0) is the unperturbed density (pressure), p′ (ρ′) is
the perturbation of pressure (density), g⃗ is the gravitational acceleration, Ω⃗ is the
angular velocity of rotation, and γ = cp/cv is the ratio of specific heats.

In the following, we adopt the Cartesian coordinates (x, y, z), where x is directed
towards rotation, y is directed towards the north pole, and z is directed vertically
upwards. An undisturbed medium was assumed to be in vertical hydrostatic bal-
ance

dp0

dz
= −gρ0 (14)

and the ideal gas law is written as

p0 =
kb

m
ρ0T = gρ0H, (15)

where kb is the Boltzman constant, T (z) is the temperature, m is the mass of hydro-
gen atom, and H(z) = kbT (z)/mg is the density scale height. Then the substitution
of Eq. (15) into Eq. (14) gives the vertical distribution of the density governed by
the equation

dρ0

dz
= −

ρ0

H

(
1 +

dH
dz

)
. (16)

We closely followed to the formalism of Lindzen (1967), who considered the
beta-plane approximation for the uniform temperature with depth. Our calcula-
tion, however, was performed for a non-uniform distribution of temperature with
depth. Here we use the vertically hydrostatic assumption, which means that the
vertical distribution of the pressure is only slightly disturbed from its static form as
it is typical for geophysical and astrophysical flows with a small Rossby number.
This means that the vertical velocity is small and it is neglected in the vertical mo-
mentum equation, while it is kept in the continuity equation. This approximation
does not take internal gravity or acoustic waves into account and hence it is only
valid for long-period waves.

We changed variables as

ṽx =
√
ρ0vx, ṽy =

√
ρ0vy, ṽz =

√
ρ0vz, p̃′ =

p′
√
ρ0
, ρ̃′ =

ρ′
√
ρ0
, (17)

so that Eqs. (11) - (13) could be written after the Fourier transform with ei(−σt+kx)

as
−iσvx − f vy = −ikp′, (18)
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−iσvy + f vx = −
∂p′

∂y
, (19)

∂p′

∂z
−

1
2H

(
1 +

dH
dz

)
p′ = −gρ′, (20)

−iσρ′ + ikvx +
∂vy

∂y
+
∂vz

∂z
−

1
2H

(
1 +

dH
dz

)
vz = 0, (21)

iσp′ = iγgHσρ′ − g
[
1 − γ

(
1 +

dH
dz

)]
vz, (22)

where f = 2Ω sin θ is the Coriolis parameter with θ being a latitude (we note
that the tilde sign was not used for the variables). Due to the vertically hydrostatic
assumption, the two terms −iσvz and −2Ωyvx were omitted on the left-hand side
of Eq. (20). The ratios of the omitted terms and the first term on the right-
hand side of Eq. (20) are proportional to σ2H/g and RH/λ2, respectively, where
R is the radius of the sphere and λ is the horizontal wavelength. The first ratio
is very small for the Rossby wave timescales. The second ratio is proportional
to H/R ≪ 1 for the typical Rossby wavelengths. Hence, both terms are small
and a vertically hydrostatic assumption is justified in the current consideration of
Rossby-type waves.

Eqs. (18) and (19) lead to the equation

( f 2 − σ2)vy = iσ
(

k
σ

f +
∂

∂y

)
p′. (23)

Eliminating ρ′, vz, and vx from Eqs. (20)-(22), we obtain

∂

∂z

[
γH

1 − γ(1 + H′)
∂p′

∂z

]
−

−

[
gk2

σ2 +
γ(1 + H′)2

4H[1 − γ(1 + H′)]
−

γH′′

2[1 − γ(1 + H′)]2

]
p′+

+
ig
σ

[
∂

∂y
−

k
σ

f
]

vy = 0, (24)

where H′ means the derivative of H by z.
We eliminated p′ from Eqs. (23)-(24) and derived the single equation for vy:

∂

∂z

[
γH

1 − γ(1 + H′)
∂vy

∂z

]
−
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−

[
γ(1 + H′)2

4H[1 − γ(1 + H′)]
−

γH′′

2[1 − γ(1 + H′)]2

]
vy−

−
g

f 2 − σ2

(
∂2

∂y2 − k2 −
k
σ

d f
dy

)
vy = 0. (25)

This equation can be solved by the separation of variables in appropriate boundary
conditions. Here we note that the separation of variables is only possible in the
case of a vertically hydrostatic assumption.

We represent vy as
vy = V(z)Ψ(y) (26)

and after straightforward calculations with the separation constant −h−1 we de-
rived the two equations

∂2Ψ

∂y2 +

[
σ2 − f 2

gh
− k2 −

k
σ

d f
dy

]
Ψ = 0, (27)

∂

∂z

[
γH

1 − γ(1 + H′)
∂

∂z

]
V(z)−

−

[
γ(1 + H′)2

4H[1 − γ(1 + H′)]
−

γH′′

2[1 − γ(1 + H′)]2 +
1
h

]
V(z) = 0. (28)

Here Eq. (27) and Eq. (28) are the latitudinal and vertical equations governing
the latitudinal and vertical structures of the waves, respectively. In fact, Eq. (27) is
equivalent to the equation that governs shallow water equatorially trapped waves in
a homogeneous layer with the width of h (e.g. Matsuno (1966)). This conclusion
corresponds to the Taylor theorem (Taylor, 1936), which states that the dynamics
of Rossby waves in stratified fluids is identical to the waves in a homogeneous
layer that has a width of equivalent depth. The equivalent depth is different for
different modes of Rossby waves. The theorem is valid for all compressible and
stratified fluids (Pedlosky (1987); Zaqarashvili et al. (2021)). We first solved Eq.
(28) in appropriate surface boundary conditions and found the equivalent depth,
h. Then we used it to solve Eq. (27) and found the solutions in the y direction,
satisfying bounded boundary conditions at poles. It should be noted that the value
of equivalent depth, h, found from Eq. (28) defines the solutions of Eq. (27);
therefore, the two equations are not independent, but interconnected by h.

Before starting to study the case of inhomogeneous distribution of temperature
with depth, we present the solutions of the simplest case of uniform H, which
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means an isothermal temperature profile. This is a very simplified approach, but it
gives the basic physics of oscillations.

With H = const, Eq. (28) leads to

∂2V(z)
∂z2 −

[
1

4H2 −
κ

Hh

]
V(z) = 0, (29)

where κ = (γ − 1)/γ.
The solution of Eq. (29) involves either exponential or periodic functions de-

pending on the value of the equivalent depth, h. We considered the exponential
function for the close boundary condition vz=0 at the surface, which corresponds
to z = 0. The value for the scale height depends on the surface temperature. The
surface temperature of 10 000 K gives H = 300 km and the corresponding equiv-
alent depth found from the close boundary condition is h ≈ 500 km.

The equivalent depth can be used to solve the latitudinal equation, Eq. (27).
The solutions of Eq. (27) must satisfy boundary conditions in y directions, namely
they must exponentially vanish at poles. Only the equivalent depth that satisfies
the polar boundary conditions can be considered to be valid. The solution of the
latitudinal equation for h = 500 km does not satisfy boundary conditions at poles;
therefore, the exponential solution of Eq. (29) is not valid. The periodic solution of
Eq. (29) leads to the value of equivalent depth, which satisfies the polar boundary
conditions, but it corresponds to very high vertical wavenumber values.

When the temperature is a function of depth (generally increasing), then its
gradient governs the state of the medium, which could be adiabatic, radiative, or
convective. The Ledoux function, A, which defines the state, can be written using
Eqs. (14)-(16) in terms of the density scale height as

A =
R
ρ0

dρ0

dz
−

R
γp0

dp0

dz
= −

R
H

(
γ − 1
γ
+

dH
dz

)
. (30)

When |dH/dz| = |H′| > (γ − 1)/γ, that is A > 0, the temperature gradient is
super-adiabatic and corresponds to convective stars. When |H′| < (γ − 1)/γ, in
other words A < 0, the temperature gradient is sub-adiabatic, hence it corresponds
to radiative stars. When A = 0, that is to say |H′| = κ = (γ − 1)/γ = 2/5, the
star is neutrally stable so that the temperature gradient is adiabatic, which is a
limiting case of super- and sub-adiabatic gradients. In this paper, we consider
radiative stars; therefore, the condition of |H′| < κ should be satisfied everywhere.
This condition is most easily satisfied for the linear profile of temperature with
a uniform vertical gradient. For other profiles, the vertical temperature gradient
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Figure 6: Vertical structure of Rossby waves for different vertical temperature gradients: ϵ = 0.2
(left panel), ϵ = 1/3 (middle panel), and ϵ = 0.39 (right panel). Here vy is plotted without

√
ρ0 in

Eq. (17) and normalised by ΩR.

generally increases with depth, which unavoidably leads to the violation of the
radiative condition at some distance from the surface. Therefore, we assumed that
the density scale height is a linear function of depth (readers should remember that
z > 0 above the surface and z < 0 below the surface), that is

H = H0 − ϵz. (31)

This is equivalent to the temperature profile of the form

T = T0

(
1 − ϵ

z
H0

)
, (32)

where T0 is the temperature at the surface, z = 0. In this case, the radiative stars
imply ϵ < κ and we use this criterion throughout the paper.

3. Free oscillations of radiative stars

We started to study free oscillations, meaning that we first solved the vertical
structure equation (28) in corresponding boundary conditions. The solutions of
the equation govern the spatial structure of Rossby waves along the vertical direc-
tion. The boundary conditions allowed us to find the discrete values of equivalent
depth h. Then we used h to find latitudinal solutions of Eq. (27), which exponen-
tially tend to zero at poles. These solutions correspond to the latitudinal structure
of Rossby waves.
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3.1 Vertical structure of Rossby waves

For the linear temperature profile, Eq. (28) is rewritten as

∂

∂z

[
γH

1 − γ(1 + H′)
∂

∂z

]
V(z) −

[
γ(1 + H′)2

4H[1 − γ(1 + H′)]
+

1
h

]
V(z) = 0, (33)

where H′ = dH/dz. Using the new variable

x = 2
√

H0 − ϵz

√
γ(1 − ϵ) − 1

ϵ
√
γh

, (34)

Eq. (33) leads to

x2∂
2V(x)
∂x2 + x

∂V(x)
∂x
+ (x2 − n2)V(x) = 0, (35)

where n = (1 − ϵ)/ϵ. This is the Bessel equation and its solutions are Bessel
functions of order n, Jn(x), and Yn(x). The solutions Jn(x) and Yn(x) must satisfy
certain boundary conditions at the surface. We used two different boundary condi-
tions. The first condition yields the vertical velocity vanishing at the surface, that
is vz = 0 at z = 0, which is a close condition. The second condition yields the total
Lagrangian pressure being zero at the surface, which is a free boundary condition.
In both cases, vertical velocity and total pressure must be bounded towards the
stellar centre.

We used different values of ϵ to find the vertical structure of Rossby waves for
different vertical temperature gradients. We assumed ϵ = 0.2, 1/3, 0.39, which
give the order of Bessel functions as n = 4, 2, 1.56, respectively. We note that the
adiabatic temperature gradient corresponds to ϵ = 0.4, and therefore ϵ = 0.39 is
nearly the upper limit of the radiative temperature gradient.

3.1.1 Close boundary condition, vz=0, at the surface

The close boundary condition, vz=0, from Eqs. (20)-(23) yields the following
equation:

∂vy

∂z
+

[
1
γH
−

1
2H
−

H′

2H

]
vy = 0. (36)

Both solutions of Eq. (35), Jn(x) and Yn(x), have similar vertical structures to the
modes. Therefore, we considered Jn(x) to be a solution and then Eq. (36) was
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rewritten as

∂

∂x
Jn(x) +

1
x

[
1
ϵ
− 1 −

2
γϵ

]
Jn(x) = 0. (37)

This is a transcendental equation, which has an infinite number of zeros. Each
zero defines a certain value of equivalent depth, h, hence it corresponds to a
certain wave mode. We first solved the equation for ϵ = 1/3 and, for the first six
zeros, we obtained the values of equivalent depth as h ≈ 1.05 H0, h ≈ 0.058 H0,
h ≈ 0.025 H0, h ≈ 0.014 H0, h ≈ 0.009 H0, and h ≈ 0.0064 H0, respectively. As
we mentioned above, only the values of equivalent depth (or wave modes), which
result in the bounded conditions at poles, are valid. Solutions of the latitudinal
equation (see the next subsection) show that the modes corresponding to the
first five zeroes do not satisfy polar boundary conditions and hence they are not
valid. On the other hand, the modes corresponding to the sixth (and larger) zero
satisfy bounded conditions at poles. The solutions of Eq. (37) for the temperature
gradient of ϵ = 0.39 show that the mode, which corresponds to the second zero of
the equation, already satisfies the polar boundary conditions. Therefore, all modes
starting from the second mode in the vertical direction are valid for a nearly
adiabatic temperature gradient. On the other hand, the temperature gradient of
ϵ = 0.2 yields the 17th and higher modes giving the bounded polar boundary
conditions. Figure 6 shows the vertical structure of Rossby waves based on
the solutions of Eq. (35) for different values of ϵ. We see that all solutions
exponentially decrease with depth, hence the corresponding modes are trapped
near the surface. All higher modes show a similar behaviour. The figure shows
that the smaller values of ϵ, that is the smaller temperature gradient, yield the
shorter vertical wavelength of Rossby waves and the stronger decay of the wave
amplitude with depth. Therefore, the Rossby waves tend to be concentrated closer
to the surface for a smaller temperature gradient.

3.1.2. Free boundary condition

In the free surface condition, the total Lagrangian pressure is zero at the surface.
Using Eqs. (20) and (22), the condition is
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Figure 7: Latitudinal structure of equatorially trapped Rossby waves for the temperature gradient
of ϵ = 1/3 and the value of equivalent depth ≈ 0.0064H0. The solutions exponentially decay
towards poles above middle latitudes. Black, red, and blue curves show l = 0, l = 1, and l = 2
modes, respectively.

∂vy

∂z
+

1
H

3(1 − ϵ)
2

vy = 0, (38)

which can be rewritten for the new variable x as

∂Jn(x)
∂x

−
1
x

3(1 − ϵ)
ϵ

Jn(x) = 0. (39)

This is also a transcendental equation and has an infinite number of zeros. We
assumed ϵ = 1/3 and for the first five zeroes we found h ≈ 0.069 H0, h ≈ 0.027 H0,
h ≈ 0.015 H0, h ≈ 0.0094 H0, and h ≈ 0.0065 H0, respectively. Only the modes
corresponding to the fifth (and higher) zero satisfy the polar boundary conditions.

The value of h obtained from each zero with a free condition is similar to the
value obtained from the next higher zero with a close condition. For example, the
first zero with a free condition is near to the second zero with a close condition,
etc. This happens because of the relation between the total Lagrangian pressure
and vertical velocity. Therefore, close and free boundary conditions result in a
similar spatial structure with a depth of the corresponding modes. Consequently,
we only consider the closed boundary condition in the rest of the paper.

3.2. Latitudinal structure of Rossby waves

We now turn to the latitudinal equation (Eq. (27)) and find the solutions with
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certain h satisfying bounded conditions at poles, which define dispersion relations
of possible wave modes in the system. The solutions of Eq. (27) crucially depend
on the parameter

ε =
4Ω2R2

gh
, (40)

which actually corresponds to the parameter (sometimes referred to as the Lamb
parameter) governing the dynamics of shallow water system of the layer thickness
h. When this parameter is much larger than one (for fast rotation or small h), then
Eq. (27) is most easily satisfied for small y. 1 Small y is equivalent to the equa-
torial region and hence the solutions are equatorially trapped. Third and higher
zeroes with a close boundary condition with h < 0.025 H0 lead to the Lamb pa-
rameter of ε > 10 for solar radius, surface temperature, and rotation. Therefore,
the modes corresponding to the higher zeroes with a close boundary condition are
confined near the equatorial regions and decay sufficiently fast towards the poles.
The modes, hence, can be considered by the equatorial beta-plane approximation,
which would mean expanding the Coriolis parameter near the equator θ ≈ 0 and
retaining only the first order term, f = βy, where β = (2Ω/R). In this case
Eq. (27) tends to

∂2Ψ

∂y2 +

[
−

kβ
σ
− k2 +

σ2

c2 −
β2y2

c2

]
Ψ = 0, (41)

where c =
√

gh is the surface gravity speed for corresponding equivalent depth h,
which was obtained from the vertical structure equation as shown in the previous
subsections.

It must be noted that the solutions under equatorial beta-plane approximation
fairly correspond to the solutions of the spherical case. In fact, the governing equa-
tion of equatorially trapped Rossby waves in beta-plane approximation is identical
to the spherical case Longuet-Higgins (1968); Zaqarashvili et al. (2021). Here we
consider only the equatorially trapped waves for which the beta-plane approxima-
tion is justified.

Eq. (41) is a parabolic cylinder equation which has bounded solutions when

−
kβ
σ
− k2 +

σ2

c2 =
β

c
(2l + 1), (42)

1see e.g. Longuet-Higgins (1968) for the similar topic of study in the spherical geometry.
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where l = 0, 1, 2, 3.... Then the solution to this equation is

Ψ = Ψ0exp
[
−
β

2c
y2

]
Hl

√β

c
y

 , (43)

where Ψ0 is the value of vy at the equator, y = 0, and Hl is the Hermite polynomial
of the order l. The solution is oscillatory inside the interval y < |

√
(2l + 1)c/β| =

|

√
(2l + 1)R2/

√
ε| and exponentially decreases towards poles outside. Smaller h

or larger ε yields a stronger decrease in the solution. As it was discussed above,
the values of h corresponding to the lower zeroes of Eqs. (37) and (39) lead to
solutions which are not bounded at poles. The bounded solutions in the case of
ϵ = 1/3, which are shown in Figure 7, start to appear for the sixth (fifth) zero with
a close (free) boundary condition, which yields h ≈ 0.0064 H0. In this case, the
Lamb parameter is around ε ≈ 43 for the solar radius, surface temperature, and
rotation. The temperature gradient of ϵ = 0.39 allows for the second (and higher)
zero with a close vertical boundary condition to lead to the bounded solution along

latitudes. The critical latitude was estimated as θc = arcsin
(√

(2l + 1)/
√
ε
)
, which

for l = 1 modes gives around ±400, that is the solutions are oscillatory in the
latitudes of < 400 and exponentially decay for > 400. Therefore, the solutions
are mostly concentrated between the latitudes ±600 and are negligible at poles
satisfying the boundary conditions there.

3.3. Dispersion equation

Eq. (42) defines the dispersion relation of waves

σ3 − 4Ω2
(
k2R2

ε
+

2l + 1
√
ε

)
σ − 8Ω3 kR

ε
= 0. (44)

This equation is identical to the dispersion relation of shallow water waves when
the width of the shallow layer is replaced by the equivalent depth, h, as stated by
the Taylor theorem. The dispersion relation governs the inertia-gravity, Rossby,
and Rossby-gravity waves for each h.

For the high frequency limit (σ ≫ Ω) with l ≥ 1, we have the dispersion
relation

σ = ±2Ω

√
k2R2

ε
+

2l + 1
√
ε
, (45)
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Figure 8: Solutions of the full dispersion equation (Eq. (44)) for ε = 43, which corresponds to the
first valid vertical mode (with h = 0.0064H0) in a star with the rotation, radius, and surface gravity
of the Sun and the temperature gradient of ϵ = 1/3. Red curves correspond to the inertia-gravity
(upper) and Rossby (lower) waves with l = 1. The blue curve corresponds to the Rossby-gravity
waves with l = 0. Wave frequency was normalised by the angular frequency of the star, Ω. The
toroidal wavenumber, k, was normalised by the stellar radius, R.

which corresponds to the inertia-gravity waves.
For the low frequency limit (σ ≪ Ω) with l ≥ 1, we have the dispersion relation

σ = −2Ω
kR

k2R2 + (2l + 1)
√
ε
, (46)

which corresponds to the Rossby waves.
For l = 0, Eq. (44) leads to(

σ − 2Ω
kR
√
ε

) (
σ2 − 2Ω

kR
√
ε
σ −

4Ω2

√
ε

)
= 0. (47)

The first solution of Eq. (46) is spurious; therefore, it must be neglected and the
second solution defines the Rossby-gravity wave

σ = Ω
kR
√
ε

1 ±
√

1 +
4
√
ε

k2R2

 . (48)

The solutions of full dispersion equation (Eq. (44)) are displayed in Figure 8
for ε = 43, which corresponds to the equivalent depth, h ≈ 0.0064 H0 (associated
with the first valid vertical mode or the sixth zero with a close condition for the
temperature gradient of ϵ = 1/3) and a star with the rotation, radius, and surface
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gravity of the Sun. We see that for large negative k, the dispersion curves of Rossby
and Rossby-gravity waves merge, while for the large positive k the inertia-gravity
and Rossby-gravity waves have the same behaviour. In the next subsection, we
consider Rossby and Rossby-gravity waves in detail.

3.4. Rossby and Rossby-gravity waves

Eq. (46) is the dispersion relation for the Rossby waves on the equatorial beta
plane. The positive frequency and the negative toroidal wavenumber indicate the
retrograde (opposite to the rotation) propagation of waves. The dispersion rela-
tion crucially depends on the parameter ε. When this parameter is small (that is
for slowly rotating stars or large equivalent depth, h), then the second term in de-
nominator is smaller than the first one, which eventually leads to the dispersion
relation of Rossby waves on the 2D surface with only longitudinal propagation
(ky = 0). This corresponds to sectoral harmonics in the spherical geometry. But
a moderate value of the parameter significantly changes the dispersion relation of
Rossby waves. In the considered case, this parameter has a moderate value due to
the small h. For a star with solar parameters, that is T0 = 5770 K, Ω = 3 × 10−6

s−1, R = 7 × 105 km, and h = 0.0064 H0 km as estimated in the previous subsec-
tion, one can find that ε ≈ 43. Therefore, one must keep the associated term in the
dispersion relation. One should note that the parameter ε is equivalent to the pa-
rameter used by Provost et al. (1981) to study the r modes in slowly rotating stars,
namely Ω2R3/(GM), if one replaces h by R and divides by four. Provost et al.
(1981) expanded all variables and the frequency with this parameter assuming it
to be much smaller than unity. This could be correct if the equivalent depth, h, is
of the order of the stellar radius. But our solution shows that h ≪ R, that is the ex-
pansion parameter of Provost et al. (1981) is not small and cannot be appropriate
in our consideration.

Rossby-gravity waves (l = 0) defined by Eq. (48) have mixed properties of
Rossby and inertia-gravity waves. This mode is similar to Rossby waves when it
propagates opposite to the rotation, but it is similar to the gravity wave when it
propagates to the direction of the rotation. The wave has no oscillatory solution
along latitudes and hence it corresponds to the sectoral modes in the spherical
geometry.

31



Global-Scale Rossby Waves on Stars

4. Observational constraints

It is of importance to show how the theoretically obtained waves might be seen
by observations. Recent progress in observations of Rossby waves using Kepler
light curves suggest that the waves can also be detected in the data of the TESS
mission. Here we provide hints for observers to detect the waves.

We used the rotating frame for the theoretical analysis of Rossby waves. On
the other hand, observed light curves were obtained in the inertial frame; therefore,
the observable frequency of the waves is expressed by

σobs = mΩ + σ, (49)

where σ is the theoretical wave frequency in the rotating frame and m = kR is the
normalised toroidal wavenumber.

Wave frequency depends on the parameter ε, which can be rewritten as

ε = 0.3
(

h
H0

)−1 (
T0

Tsun

)−1 (
Ω

Ωsun

)2 (
R

Rsun

)2

, (50)

where T0 (Tsun), Ω (Ωsun), and R (Rsun) are the surface temperature, the surface
angular velocity, and the radius of a star (the Sun), respectively.

Figure 9 shows the dependence of the wave frequency in the inertial frame, σobs

on ε. Only the frequency of lower order modes m = 1 and m = 2 are shown on this
figure. The normalised frequencies of all modes (Rossby, Rossby-gravity, inertia-
gravity) are increasing for higher ε, that is for the higher angular velocity of stars
(with the same surface temperature and radius). The anti-symmetric harmonics
with regards to the equator, l = 1, 3..., probably have negligible contributions to
stellar light curves as the northern and southern parts of the modes cancel each
other out.2 Therefore, only symmetric harmonics, l = 0, 2, 4, are shown on this
figure. Rossby waves with m = 1 have a frequency in the range of 0.65Ω < σobs <

Ω, that is less than the stellar angular velocity. The frequency of Rossby waves
with m = 2 is in the range of 1.4Ω < σobs < 2Ω. Inertia-gravity and Rossby-
gravity waves have an order of magnitude higher frequencies than the angular
velocity of stellar rotation. Observations can define the frequency of observed
waves, which subsequently determine the corresponding value of ε using Figure
9. It is important to note that ε depends on the equivalent depth, h, and three

2This applies to stars whose rotation axes are perpendicular to the line of sight. For the stars with inclined rotation
axes, the situation is more complicated.
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Figure 9: Wave frequency in the inertial frame as expected to be seen by observations vs ε. The
frequency was normalised by the angular frequency of a star, Ω. Black, blue, and red curves
correspond to the modes with l = 0, l = 2, and l = 4, respectively. The left panels display the
Rossby modes with m = 1 (solid lines, upper panel) and m = 2 (dashed lines, lower panel). The
upper (lower) right panel shows inertia-Gravity modes (Rossby-gravity modes). Grey dashed lines
denote the value of ε calculated for the solar parameters and the equivalent depth of h = 0.0064 H0.

stellar parameters such as the surface temperature, the surface angular velocity,
and the radius. The equivalent depth is calculated from the Rossby wave theory
as discussed in the subsection 3.1. Consequently, if one knows two of the stellar
parameters, one can estimate the value of the third one.

5. Discussion and conclusions

Rossby waves arise due to the conservation of absolute vorticity; therefore, vor-
ticity is an essential ingredient of the waves. On the other hand, pressure variation
is an equally important component in the waves. Therefore, the waves cause the
periodic variations of surface pressure (temperature or density or both), which may
lead to the periodical modulation of stellar radiance (Saio et al., 2018). Recent ob-
servations of Rossby waves in the light curves of Kepler and TESS stars (Saio
et al., 2018; Li et al., 2019; Jeffery, 2020; Samadi-Ghadim et al., 2020; Takata
et al., 2020; Henneco et al., 2021; Saio & Kurtz, 2022) have opened a new area
for seismology of stellar interiors by the waves.

It is important to know the oscillation spectrum of the modes and how much
deeper the modes penetrate in the stellar interior. Solving the full spherical 3D
problem is generally also complicated with numerical simulations. In this paper,

33



Global-Scale Rossby Waves on Stars

we look into a more simplified rectangular problem taking into account the ver-
tical stratification of density and temperature in stellar interiors. The rectangular
geometry significantly simplifies the finding of wave dispersion relations, which
are similar to those obtained under spherical geometry (Matsuno, 1966; Longuet-
Higgins, 1968). Previous theoretical studies generally considered the spherical
geometry in a slowly rotating limit (Provost et al., 1981; Saio, 1982; Damiani
et al., 2020). Though the approximation of Papaloizou & Pringle (1978) includes
rapidly rotating stars, it is valid for only higher order modes. On the other hand,
our approximation is valid for stars with any rotation rate (except very rapidly
rotating stars with significant distortion from the spherical symmetry); therefore,
it is step forward in the study of stellar Rossby waves. Our mathematical for-
malism closely follows the consideration adapted in Earth’s atmosphere Lindzen
(1967). We considered the vertically hydrostatic assumption, so that the vertical
distribution of the pressure is only slightly disturbed from its static form due to
the waves. This approximation neglects the internal gravity and acoustic waves,
hence it is valid for time and spatial scales of Rossby waves. For linear dynam-
ics of the waves, we derived a single second-order partial differential equation for
vertical and latitudinal variations, which was solved by the method of separation
of variables. The two equations for the vertical and the latitudinal variations were
obtained, which are connected by the separation constant defining the equivalent
depth h.3 The solutions of the two equations that satisfy certain boundary condi-
tions give the exact analytical dispersion relations and the vertical structure of the
waves in a certain distribution of background values.

The vertical structure of wave modes obviously depends on the vertical temper-
ature profile. The super-adiabatic temperature gradient (positive Ledoux function,
A > 0) corresponds to convective stars, while the sub-adiabatic gradient (negative
Ledoux function, A < 0) describes the radiative stars. The limiting case from
both gradients, that is A = 0, is the adiabatic temperature gradient, which fits the
neutrally stable interior, where any plasma displacement in the vertical direction
has no following dynamics. In this paper, we consider only radiative stars with
the linear sub-adiabatic temperature gradient. 4 Other profiles of temperature lead
the Ledoux function to change from a negative to positive value at some depth;
therefore, they are inappropriate for the radiative stars. In the case of the linear

3We note that the relation between the separation constant and the wave frequency obtained from the solution of
the latitudinal equations was studied by Townsend (2003).

4Convective stars with a near super-adiabatic temperature gradient will be studied in a forthcoming paper.
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temperature profile, the vertical structure equation is transformed into the Bessel
equation, which has exact analytical solutions in terms of Bessel functions.

To solve the latitudinal equation, we used the equatorial beta-plane approxi-
mation, which resulted in a parabolic cylinder equation with known solutions in
terms of Hermite polynomials. Any solution on the equatorial beta plane, which
decays sufficiently quickly towards the coordinate corresponding to the pole, is a
correct approximation to the solutions on a sphere (Lindzen, 1967). Indeed, the
governing equation and the dispersion relation of equatorially trapped waves are
identical in the equatorial beta plane and spherical geometry (Longuet-Higgins,
1968; Zaqarashvili et al., 2021). Hence, the beta plane approximation is valid for
the solutions decaying towards the poles. The solutions satisfy bounded bound-
ary conditions at poles define the dispersion equation for Rossby, Rossby-gravity,
and inertia-gravity waves, Eq. (44). Frequencies of modes with different wave
numbers were then easily derived.

The solutions to the problem significantly depend on the boundary conditions
for the vertical and latitudinal structure equations. We first solved the vertical
structure equation in a close boundary condition at the surface (i.e. when the
vertical velocity vanishes), which led to the equivalent depth, h. Then we used the
depth to find the solutions of the latitudinal equation, which satisfied the bounded
conditions at the poles.

Close boundary conditions at the surface led to the transcendental equation with
Bessel functions (Eq. 37), which has an infinite number of zeroes corresponding
to different wave modes. Each of the zeroes define the equivalent depth, which
shapes the latitudinal structure of modes, and therefore only the modes that have
bounded solutions at poles are valid. We found that the first valid zero yields
the equivalent depth of h = 0.0064 H0 for the vertical temperature gradient of
ϵ = 1/3, where H0 is the density scale height at the surface. In this case, the
modes with l = 0, 1, 2, where l shows the number of zeroes between the poles,
are concentrated around the equator between ±600 latitudes (see Fig. 2), so they
are the equatorially trapped waves (Matsuno, 1966; Longuet-Higgins, 1968). The
modes have oscillatory behavior along the vertical direction with the wavelength
of several surface scale heights (see middle panel on Figure 1) and may penetrate
to the depth of ∼ 50 H0 (the scale height of a star with the surface temperature
of 10 000 K and solar-type surface gravity is around 300 km). The vertical struc-
ture of modes significantly depends on the vertical temperature gradient rate. We
found that the vertical wavelength of modes is longer for the stronger temperature
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gradient (Figure 1) being of the order of density scale height for ϵ = 0.2 and of
the order of 10 density scale height for ϵ = 0.39. Figure 1 also shows that the
smaller temperature gradient leads to a stronger reduction in oscillation amplitude
with depth, so that the waves are more concentrated near the surface. Generally,
it is seen that the modes are confined near the surface layer of ∼ 15 Mm. The dis-
persion equation is similar to that of equatorially trapped waves with ε ≫ 1. The
observable frequencies of the Rossby waves with m = 1 and m = 2 are in the range
of 0.65Ω < σobs < Ω and 1.4Ω < σobs < 2Ω, respectively, which depends on
the stellar rotation, radius, and surface temperature (see Figure 4). Inertia-gravity
and Rossby-gravity modes may have the observable frequency in the interval of
5Ω < σobs < 20Ω.

Non-spherical distortion of a rotating star may influence the frequencies and
the spatial structures of Rossby waves. We shall estimate the influence of non-
sphericity from the analysis of Provost et al. (1981). They expanded all physical
quantities in the small parameter (Ω/Ωg)2, where Ωg =

√
GM/R3 is the character-

istic frequency of the star. Consequently, they assumed the frequency of Rossby
waves to be σ = σ0(1 + (Ω/Ωg)2σ1), where σ0 is the frequency of 2D classical
Rossby waves and σ1 is the first order frequency. Therefore, the correction due
to the 3D consideration and non-spherical distortion is (Ω/Ωg)2σ1. The value of
(Ω/Ωg)2 is ≈ 1.7 · 10−5 for a star with a solar radius, mass, and angular frequency,
while it is ≈ 1.7 · 10−3 for a star with the rotation that is ten times faster (i.e. with
the period of 2.6 days). On the other hand, the largest frequency correction for ra-
diative stars according to Provost et al. (1981) is σ1 = −1.121, which corresponds
to the mode with n = 3, l = 3, m = 1, and k = 4, where n is the polytropic index, l
and m are the latitudinal and azimuthal numbers, respectively, and k is the number
of radial nodes (see the fifth row of the first column in the table 1 of Provost et al.
(1981)). Consequently, typical maximal correction of the 2D Rossby wave fre-
quency due to the non-spherical distortion is 2 ·10−5 for a slowly rotating star such
as the Sun, and 2 ·10−3 for a rapidly rotating star with a period of 2.6 days. Hence,
the correction due to the non-spherical distortion is negligible in most cases. The
situation can be changed for very rapidly rotating stars with a period of < 0.1 days.
Therefore, our analysis may not be valid for these extreme cases.

It is known that the magnetic field has a significant influence on the dynamics
of Rossby waves (Zaqarashvili et al., 2007; Márquez-Artavia et al., 2017; Za-
qarashvili, 2018; Dikpati et al., 2018, 2020; Zaqarashvili et al., 2021). Therefore,
the observed frequency of Rossby waves and their temporal variations might be
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used for seismic estimations of the magnetic field strength near the surface and in
the interiors of stars (Gurgenashvili et al., 2016; Zaqarashvili et al., 2021; Gurge-
nashvili et al., 2022). But a more thorough study (observational and theoretical) is
surely required in that vein in the future.

To obtain the dispersion relations and vertical structure of Rossby waves, we
considered the uniform rotation of stars. On the other hand, latitudinal differential
rotation may lead to large-scale instabilities on stars (Watson, 1981; Gilman &
Fox, 1997; Gilman et al., 2007), which may also lead to an instability and fre-
quency modification of Rossby waves (Zaqarashvili et al., 2010; Gizon et al.,
2020, 2021). Therefore, the inclusion of the latitudinal differential rotation in
the consideration is desired in the future.

One can argue that anti-symmetric modes (with odd l) slightly contribute to
stellar light curves as the southern and northern hemispheric parts of radiance may
balance each other. This effect is unimportant for stars with a rotation axis being
nearly parallel to the line of sight. Therefore, in most stars one can expect to
observe only the symmetric modes with even l.

As it was discussed above, the rate of temperature gradient ϵ determines the
equivalent depth, h, and hence defines the vertical structure and frequency of
modes. On the other hand, systematic observations of wave frequency may lead to
the estimation ε. Then one can determine the equivalent depth of the correspond-
ing mode and hence roughly estimate the vertical temperature gradient in stellar
interiors. This might be a useful tool for stellar seismology.

Considering the equatorial beta-plane approximation and linear vertical gradi-
ent of the temperature in the interior of radiative stars led to the exact analytical
solutions for Rossby and inertia-gravity waves. Oscillation spectra and the radial
structure of the waves with different wavenumbers were obtained. The waves may
affect the light curves of stars; therefore, they could be further observed by recent
space missions. The observed Rossby waves may be used for the seismology of
stars with different spectral classes being at different evolutionary phases.
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Abstract

Observations by recent space missions reported the detection of Rossby waves
(r-modes) in light curves of many stars (mostly A, B, and F spectral types) with
outer radiative envelope. This paper aims to study the theoretical dynamics of
Rossby-type waves in such stars. Hydrodynamic equations in a rotating frame
were split into horizontal and vertical parts connected by a separation constant
(or an equivalent depth). Vertical equations were solved analytically for a lin-
ear temperature profile and the equivalent depth was derived through free surface
boundary condition. It is found that the vertical modes are concentrated in the
near-surface layer with a thickness of several tens of surface density scale height.
Then with the equivalent width, horizontal structure equations were solved, and
the corresponding dispersion relation for Rossby, Rossby-gravity, and inertia-
gravity waves was obtained. The solutions were found to be confined around the
equator leading to the equatorially trapped waves. It was shown that the wave fre-
quency depends on the vertical temperature gradient as well as on stellar rotation.
Therefore, observations of wave frequency in light curves of stars with known pa-
rameters (radius, surface gravity, rotation period) could be used to estimate the
temperature gradient in stellar outer layers. Consequently, the Rossby mode may
be considered as an additional tool in asteroseismology apart from acoustic and
gravity modes.
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1. Introduction

Rossby (planetary) waves govern large-scale dynamics of rotating spheres5.
The waves have been studied for centuries starting from Hadley (1735). They
are characterized as low-frequency waves compared to the rotation frequency of
the sphere and the solutions were found by Hough (Hough, 1897, 1898) based
on Laplace tidal equations (Laplace, 1893). The existence of Rossby waves is
associated with the Coriolis force and conservation of absolute vorticity on a ro-
tating sphere. The first observational description and physical basics of the waves
were discussed by Rossby (1939) in the Earth context during his work on a global
weather forecast at the Massachusetts Institute of Technology. Consequently, the
Rossby waves are well studied in Earth atmosphere and oceans by observations
and theory (Hovmöller, 1949; Eliasen & Machenhauer, 1965; Yanai & Lu, 1983;
Lindzen et al., 1984; Hirooka & Hirota, 1989; Madden, 2007; Chelton & Schlax,
1996; Hill et al., 2000; Haurwitz, 1940; Lindzen, 1967; Gill, 1982; Pedlosky,
1987; Platzman, 1968; Salby, 1984).

Rossby waves have an important role in the dynamic of different astrophysical
objects like accretion disks, solar system planets, stars, etc. (Zaqarashvili et al.,
2021). The waves have been recently detected on the Sun by granular tracking
and helioseismology (Löptien et al., 2018; Liang et al., 2019; Hanasoge & Man-
dal, 2019; Proxauf et al., 2020; Gizon et al., 2021; Hanson et al., 2022) as well
as by coronal bright points (McIntosh et al., 2017; Krista & Reinard, 2017). It
is also suggested that the Rossby waves may lead to intermediate periodicity in
solar activity (Zaqarashvili et al., 2010; Gurgenashvili et al., 2016, 2017; Dik-
pati et al., 2020). Theoretical description of Rossby waves in the solar interior and
tachocline is also significantly developed in recent years (Zaqarashvili et al., 2007;
Zaqarashvili, 2018; Gachechiladze et al., 2019; Dikpati et al., 2018, 2022; Gizon
et al., 2020; Bekki et al., 2022; Horstmann et al., 2023).

Huge observational data collected by recent space missions TESS (Transiting
Exoplanet Survey Satellite), CoRoT (Convection, Rotation, and planetary Tran-
sits), and Kepler led to the detection of Rossby waves in light curves of stars.
First, Van Reeth et al. (2016) reported the evidence of r-modes in the Gamma Do-
radus stars using Kepler data. Then the waves have been observed in many stars
with different spectral classes (Saio et al., 2018; Li et al., 2019; Jeffery, 2020;
Samadi-Ghadim et al., 2020; Takata et al., 2020; Saio & Kurtz, 2022). It has been

5The waves are mostly known as r-modes in stellar physics (Papaloizou & Pringle, 1978)
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also suggested that the Rossby waves may lead to the observed short-term stellar
cycles (Lanza et al., 2009; Bonomo & Lanza, 2012; Gurgenashvili et al., 2022).

The theory of Rossby waves was developed in the context of the Earth’s atmo-
sphere and oceans mostly in the shallow water approximation, which considers
the shallow layer of the sphere with a homogeneous density. This approximation
is valid for the layers, which have smaller widths compared to the density scale
height. On the other hand, stellar interiors generally cover many scale heights es-
pecially upper parts with lower temperatures. Therefore, the consideration of the
radial direction is necessary to model the Rossby waves in stars. For this reason,
the separation of horizontal and vertical equations allow us to find the solutions
of Rossby waves in some approximations. Using expansions with small parame-
ters, Papaloizou & Pringle (1978) studied the high order r-modes in 3D spherical
geometry of rapidly rotating stars, while Provost et al. (1981) and Saio (1982) an-
alyzed the low order modes in the slow rotation limit. However, it was shown by
Taylor (1936) that the dynamics of Rossby waves in stratified fluids are identical
to the waves in a homogeneous layer that has a width of the equivalent depth cor-
responding to the separation constant of horizontal and vertical equations. Then,
the Rossby waves in stratified fluids (such as stellar interiors) can be described
in shallow water approximation if the separation constant is known. Townsend
(2003) used the spherical hydrodynamic equations in the traditional approxima-
tion and found the relation between wave frequency and separation constant (see
also in Lee & Saio (1997)). It was found that the solutions of horizontal equations
(in fact Laplace tidal equations) are approximated by parabolic cylinder equation
(or Schrödinger equation) in the low-frequency limit, which has exact solutions in
terms of Hermite polynomials. This phenomenon is well studied in the Earth con-
text by Longuet-Higgins (1968) in spherical coordinates and by Matsuno (1966)
in Cartesian coordinates. Namely, the low-frequency waves in shallow water ap-
proximation (obtained either in fast rotation or in a narrow width of the layer) are
confined around the equator and hence are known as equatorially trapped waves.
Equatorially trapped waves have the same solutions and dispersion relations in
spherical and Cartesian coordinates (Zaqarashvili et al., 2021), which allows us
to consider simpler rectangular symmetry. Recently Albekioni et al. (2023a) used
the traditional approximation to solve the dynamics of Rossby waves in horizontal
and vertical directions in rotating early-type stars with outer radiative envelopes.
The horizontal behavior of the waves was found to be governed by a parabolic
cylinder equation with the solutions of Hermite polynomials. While the vertical
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behavior of the waves was governed by the Bessel equation for the linear vertical
temperature gradient. Consequently, the vertical solutions were found in terms
of Bessel functions and hence the free surface boundary conditions allowed us to
find the vertical modes with corresponding separation constant. Then the separa-
tion constant was used in horizontal equations to find the frequencies of different
wave modes with various horizontal wave numbers. However, Albekioni et al.
(2023a) found the solutions only for the first vertical mode in a particular temper-
ature gradient, while the formalism allows us to consider also overtone vertical
modes and different values of temperature gradients. Vertical overtones lead to the
construction of period spacing patterns, which are very important to compare the
theory to observations (Aerts, 2021), therefore additional study related to vertical
overtones is certainly required.

In this paper, we expand the results of Albekioni et al. (2023a) for various ver-
tical modes of Rossby waves and different rates of vertical temperature gradients
for stars with outer radiative envelopes.

2. Theoretical model

We use the linear adiabatic hydrodynamic equations in a rotating frame of stel-
lar surface:

ρ0
∂v⃗
∂t
+ 2ρ0Ω⃗ × v⃗ = −∇p′ + ρ′g⃗, (51)

∂ρ′

∂t
+ (⃗v · ∇)ρ0 + ρ0∇ · v⃗ = 0, (52)

∂p′

∂t
+ (⃗v · ∇)p0 + γp0∇ · v⃗ = 0, (53)

where ρ0 (p0) is the equilibrium density (pressure), ρ′ (p′) is the perturbation of
density (pressure), v⃗ is the perturbation of velocity, g⃗ is the gravitational acceler-
ation, Ω⃗ is the angular frequency of rotation and γ = cp/cv is the ratio of specific
heats. We note that solid body rotation is adopted throughout the paper. The ef-
fects of differential rotation will be studied in the future. Undisturbed medium is
assumed to be in vertical hydrostatic balance, which with the ideal gas law gives
the vertical distribution of undisturbed physical parameters (density, pressure, and
temperature). Details of the initial setup and mathematical formalism can be found
in Albekioni et al. (2023a) and we do not repeat it here.
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Figure 10: Equivalent depth (normalized by the surface scale height, H0) vs the temperature gra-
dient, ϵ, for the first five zeroes of Eq. (60) i.e. for the first five vertical modes (the first mode
corresponds to the upper curve, and the fifth mode corresponds to the lower curve). Horizontal
black lines show the upper limits of hc, which satisfy the polar boundary conditions, for different
stellar rotation rates (Ω⊙ is the angular frequency of the Sun). All values of h < hc for each rotation
rate lead to the bounded solutions along the latitudinal direction.

Considering the Cartesian coordinate system, the Fourier transform of the form
ei(−σt+kx) and the vertically hydrostatic assumption of perturbed variables, Eqs.
(51)-(53) lead to the two equations (see details in Albekioni et al. (2023a))

∂2Ψ

∂y2 +

[
σ2 − f 2

gh
− k2 −

k
σ

d f
dy

]
Ψ(y) = 0, (54)

∂

∂z

[
γH

1 − γ(1 + H′)
∂

∂z

]
V(z)−

−

[
γ(1 + H′)2

4H[1 − γ(1 + H′)]
−

γH′′

2[1 − γ(1 + H′)]2 +
1
h

]
V(z) = 0, (55)

whereΨ(y) and V(z) are the functions describing the latitudinal and the radial parts
of the latitudinal velocity so that vy = Ψ(y)V(z), σ is the frequency of waves, k is
the wavenumber along the x axis, f = 2Ω sin θ is the Coriolis parameter (θ being
as latitude) and H(z) = kbT (z)/mg is the density scale height (kb is the Boltzmann
constant and m is the mass of hydrogen atom). Here H′ is the first derivative and
H′′ is the second derivative with z. Note that x, y, z axes are directed towards the
rotation, the north pole, and vertically upwards, respectively. ρ0 is absorbed in the
expression of velocity so that vy is multiplied by

√
ρ0. We used the method of

separation of variables to separate the equations into y- and z-dependent parts, so
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that h is the separation constant. The physical meaning of h can be understood for
a simple isothermal case, H = const. In this case, Eq. (55) has periodic solutions
when k2

z = (γ − 1)/(γHh) − 1/4H2 > 0, which means that h < 4H(γ − 1)/γ.
Then kz ∼ h−1/2 i.e. smaller h yields the shorter vertical wavelength. A star
with a surface temperature of 10 000 K yields H = 300 km, then h must be
smaller than 480 km in order to have periodic solutions in vertical directions. The
corresponding vertical wavelength is a few Mm and less, therefore the waves will
have a small vertical extent near the surface, but may be increased with depth.

Eq. (54) is equivalent to the equation that governs shallow water equatori-
ally trapped waves in a homogeneous layer with the width of h (e.g., Matsuno
(1966)). In fact, this is the Taylor theorem (Taylor, 1936) stating that the dynam-
ics of Rossby waves in stratified fluids are identical to the waves in a homogeneous
layer that has a width of equivalent depth, h. Therefore, one can use the shallow
water equations to describe the Rossby waves in a stratified fluid, if the equivalent
depth of the corresponding wave mode is known. Note that the equivalent depth
is different for different modes of Rossby waves.

Equations (54)-(55) govern the dynamics of Rossby and inertia-gravity waves
in the vertical and horizontal directions. Note that the internal gravity and acous-
tic waves are neglected from the consideration using low-frequency approxima-
tion. This approximation is justified as the acoustic and internal gravity waves
have time scales of minutes and hours respectively, while the Rossby and inertia-
gravity waves have much longer time scale of the order of days. The equations
(54)-(55) can be solved in two different ways. First, one can solve the latitudinal
part of the equations and calculate the separation constant based on the bound-
ary conditions at the poles. Then the obtained separation constant can be used to
find the radial dependence of solutions through the solution of a system of vertical
equations (this approach corresponds to the forced oscillation case in the Earth’s
atmospheric science). Lee & Saio (1997) and Townsend (2003) used the same
approach in spherical geometry separating initial equations into two systems of
equations with latitudinal and vertical dependence. They solved the latitudinal
equations and derived the relations between the wave frequency and the separa-
tion constant. Second, one can first solve the radial part of the equations using the
vertical boundary conditions and find the corresponding separation constant that
is the equivalent depth (this approach corresponds to the so-called free oscillation
case in the Earth’s atmospheric science). Then one can use the equivalent depth
to find the latitudinal dependence and frequency of the waves. Albekioni et al.
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(2023a) used the second approach and found equatorially trapped Rossby waves
satisfying the bounded conditions at poles. Here we use the approach as in Al-
bekioni et al. (2023a), hence we will first solve Eq. (5) and find the equivalent
depth according to the boundary conditions in the vertical direction.

3. Vertical structure of Rossby waves

Solutions of Eq. (55) are determined by the vertical variation of the density
scale height, which actually depends on the vertical temperature gradient. In this
paper, we use the linear profile of the scale height with a uniform vertical gradient

H = H0 − ϵz, (56)

which is equivalent to the temperature profile of the form

T = T0

(
1 − ϵ

z
H0

)
, (57)

where H0 and T0 are the scale height and the temperature at the surface, z = 0,
respectively.

In this paper, we consider early-type stars with outer radiative envelope, there-
fore ϵ < (γ − 1)/γ = 0.4 should be satisfied. The linear temperature gradient
assures the existence of a radiative environment through the considered extent of
the stellar interior. For other profiles, the vertical temperature gradient generally
increases with depth, which unavoidably leads to the violation of the radiative con-
dition at some distance from the surface. It was shown by Albekioni et al. (2023a)
that the Rossby waves are confined near-surface layers of stars with the thickness
of 30-50 H0, hence the linear profile is justified. Therefore, here we only consider
an uniform linear profile of the temperature.

Eq. (55) leads to the Bessel equation for the linear temperature profile (Eq.
(56))

x2∂
2V(x)
∂x2 + x

∂V(x)
∂x
+ (x2 − n2)V(x) = 0, (58)

where

x = 2
√

H0 − ϵz

√
γ(1 − ϵ) − 1

ϵ
√
γh

(59)

and n = (1 − ϵ)/ϵ. Solutions of the equations are the Bessel functions of the
order n, Jn(x) and Yn(x). In Eq. (58), there are two unknown parameters, ϵ and
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Figure 11: Vertical structure of first three vertical modes of Rossby waves for the temperature
gradient of ϵ = 0.35 (upper panels) and ϵ = 0.39 (lower panels). Left, middle, and right panels
correspond to the first, second, and third modes of Rossby waves, respectively. Note that ρ0 is
absorbed in the expression of velocity in the used formalism so that vy is multiplied by

√
ρ0.

Therefore, the velocity plotted in this figure is non-dimensional.
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Figure 12: Latitudinal structure of Rossby waves for temperature gradient ϵ = 0.39, stellar angular
frequency of 3Ω⊙ = 9×10−6s−1 (upper panel) and 5Ω⊙ = 15×10−6s−1 (lower panel). Left, middle,
and right columns display the first, second and third vertical modes. Black, red, and blue curves
on each panel show n = 0, n = 1, n = 2 modes, respectively. All modes represent the equatorially
trapped waves.

h, assuming that the surface temperature and hence H0 is known. Then fixing the
temperature gradient, ϵ, leads to the determination of h using boundary conditions.
Both, Jn(x) and Yn(x) are bounded for z → −∞ (i.e. towards stellar center). On
the other hand, Yn(x)→ ∞ for x→ 0 i.e. for z→ H0/ϵ. Therefore, Jn(x) seems to
be a more appropriate solution of Eq. (58). The free boundary condition (when
the Lagrangian pressure is zero) at the surface z = 0, that is at x = x(z = 0), leads
to the equation (Albekioni et al., 2023a)

∂Jn(x)
∂x

−
1
x

3(1 − ϵ)
ϵ

Jn(x) = 0. (60)

For each value of ϵ, the free boundary condition, Eq. (60), gives an infinite
number of zeros and hence an infinite number of h. Each of the zeroes and hence
h corresponds to the particular vertical mode of waves.

Fig. (10) shows the equivalent depth vs different temperature gradients for
different zeroes of Eq. (60).

Only the first five zeros, hence the first five vertical harmonics, are shown in
this figure in the temperature gradient range of 0.3-0.39 (note that ϵ = 0.4 is the
upper limit of radiative medium). When the temperature gradient approaches the
adiabatic limit (ϵ = 0.4), then the corresponding equivalent depth is reduced for all
five vertical harmonics. We need to keep in mind that each calculated equivalent
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depth must lead to bounded solutions at poles when one inserts it in Eq. (54).
This upper limit of the equivalent depth, hc, is shown by black lines in Fig.(10) for
different rotation rates of stars (Note, that here solar angular frequency has a value
Ω⊙ = 3 × 10−6s−1). All the solutions with h > hc do not satisfy polar boundary
conditions and, therefore are invalid for our consideration (see the next section).
It is seen that the rapidly rotating stars allow all vertical harmonics in considered
intervals of the temperature gradient to be bounded at poles. On the other hand,
for the slowly rotating stars (similar to the Sun) only fifth and higher overtones are
under the limit for the whole range of temperature gradient.

Next, we analyze the vertical structure of individual vertical modes and its de-
pendence on the value of temperature gradient. We assume two different val-
ues of ϵ: 0.35 and 0.39. The first three values of equivalent depth correspond-
ing to the first three vertical modes for ϵ = 0.35 calculated from Eq. (60) are
h = 0.0485 H0, 0.0193 H0, 0.0104 H0, respectively. For ϵ = 0.39, the correspond-
ing values are h = 0.0077 H0, 0.0032 H0, 0.0018 H0. The corresponding solutions
of Eq.(55), which is the latitudinal velocity of the Rossby waves, are plotted Fig.
(11). The figure shows that the wavelength is shorter for the higher modes as
expected, but the higher modes penetrate slightly deeper in the interior. On the
other hand, a larger temperature gradient yields a slightly longer wavelength of
the waves as seen from the comparison of upper and lower rows.6

4. Latitudinal structure of Rossby waves

The obtained equivalent depths, h, which correspond to the different vertical
modes of Rossby waves, must be inserted in Eq.(54) and the solutions satisfying
the bounded conditions at poles must be found. Consequently, only the vertical
modes that lead to the latitudinal solutions vanishing towards the poles are valid.
The latitudinal structure of the waves described by Eq.(54) crucially depends on
the equivalent depth. It is found by Albekioni et al. (2023a) that the sufficiently
small equivalent depth results in the solutions, which are concentrated around the
equator. The equivalent depth in Figure 1 has a small value for almost all modes

6Note, that the lower left panel of Figure 2 of this paper is the same as the right panel of Fig.1 in Albekioni et al.
(2023a). However, the amplitudes at z = 0 are different in these two plots, as here we used the same amplitudes for
all six plots for better comparison. This different normalisation obviously does not affect the vertical structure of the
waves.
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Figure 13: Frequencies of Rossby (lower curves), Rossby-gravity (middle curves with black color)
and inertia-gravity waves (upper curves) vs toroidal wavenumber, m, obtained from Eq. 63. Black,
blue and red colors show the modes with n = 0, n = 1, and n = 2, respectively. The frequencies
match with the first vertical modes corresponding to the temperature gradients of ϵ = 0.39 (solid
lines) and ϵ = 0.35 (dashed lines) for the stellar angular frequency of 3Ω⊙.

Figure 14: Frequencies of Rossby (lower curves), Rossby-gravity (middle curves with black color)
and inertia-gravity waves (upper curves) vs toroidal wavenumber, m, obtained from Eq. 63. Black,
blue and red colors show the modes with n = 0, n = 1, and n = 2, respectively. The frequencies
match with the first (solid lines) and the second (dashed lines) vertical modes for the temperature
gradient of ϵ = 0.39 for the stellar angular frequency of 3Ω⊙.
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Figure 15: First (blue), second (red) and third (green) vertical harmonics of Rossby waves vs
toroidal wavenumber, m, obtained from Eq. 63 for the temperature gradient of ϵ = 0.39 and the
stellar angular frequency of 3Ω⊙. Solid and dashed lines correspond to the modes with n = 2 and
n = 4, respectively.

Figure 16: Frequency of different vertical modes of Rossby wave vs stellar rotation for a vertical
temperature gradient of ϵ = 0.39. Blue, red, and green lines correspond to the first, second, and
third vertical modes, respectively. Here the toroidal and latitudinal wavenumbers are m = −1 and
n = 1, respectively.
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for rapid rotations (Ω > Ω⊙), therefore, almost all vertical modes represent equa-
torially trapped waves. Near the equator, Coriolis parameter can be expanded as
f = βy, where β = 2Ω/R and the Eq.(54) is transformed into parabolic cylinder
equation

∂2Ψ

∂y2 +

[
−

kβ
σ
+
σ2 − k2c2

c2 −
β2y2

c2

]
Ψ(y) = 0, (61)

where c =
√

gh is the surface gravity speed. When the Lamb parameter of partic-
ular wave mode with the equivalent depth h, ε = 4Ω2R2/gh, is much larger than
unity, then the solutions of Eq.(61) are trapped in low latitudes and exponentially
vanish towards poles. This happens for small equivalent depth, h ≪ H0, and fast
rotation, Ω > Ω⊙. In this case, the solutions of Eq.(61) are in terms of Hermite
polynomials (see details in Albekioni et al. (2023a))

Ψ = Ψ0 exp
(
−

√
ε

2
y2

R2

)
Hn

(
ε1/4 y

R

)
, (62)

and the waves are governed by the dispersion equation

ω3 −
4
√
ε

(
2n + 1 +

m2

√
ε

)
ω −

8m
ε
= 0, (63)

where ω = σ/Ω is the normalised wave frequency, m = kR is the normalised
toroidal wavenumber (can be assumed as discrete m = 0, 1, 2...), and n = 0, 1, 2...
denotes the number of zeroes along the latitudinal direction. n = 0 means that the
mode has no zero along the latitudinal direction i.e. it corresponds to the sectoral
harmonic, n = 1 has one zero at the equator, etc. For n ≥ 1, the dispersion rela-
tion governs two higher frequency prograde and retrograde inertia-gravity waves
and one lower frequency retrograde Rossby wave. For n = 0, Eq. (63) governs
prograde and retrograde Rossby-gravity waves.

Eq. (62) shows that the latitudinal structure of the waves is governed by ε:
larger ε leads to the stronger decrease in the wave amplitude. One can estimate the
critical ε from Eq. (62) as (

√
εy2/2R2)y=πR/2 = 1, which yields e-times decrease of

polar values with regards to the equator. This gives the critical value of ε as ≈ 25.
All modes with ε > 25 vanish towards poles, therefore they are valid solutions,
while the modes with ε < 25 are not bounded at poles. Consequently, for each
angular frequency, Ω, there is the critical value of the equivalent depth, h, which
defines valid solutions of Rossby waves (here we assume fixed R and g). The
critical equivalent depths for different angular velocities of stars are plotted by
horizontal black lines in Fig.(10).
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The upper panels of Fig. (12) show the latitudinal structure of the first three
vertical modes in the case of the temperature gradient ϵ = 0.39 and the angu-
lar frequency of Ω = 3Ω⊙. It is seen that the waves are located between ±500,
therefore they are equatorially trapped waves. Their amplitudes vanish towards
the poles and hence satisfy the polar boundary conditions. The higher modes are
more concentrated towards the equator. This happens because ε is inversely pro-
portional to the equivalent depth, hence the smaller h yields the larger ε in the case
of fixed stellar angular frequency. Lower panels of Fig. (12) display the structures
of the same modes but for higher angular frequency Ω = 5Ω⊙. It is seen that the
wave profiles are squeezed towards the equator in comparison to the slower rota-
tion and the waves are trapped between ±300 latitudes. Therefore, the stars with
faster rotation display stronger trapping of Rossby waves around the equator.

5. Frequency of the waves

Eq. (63) shows that the wave frequency depends on the Lamb parameter, ε, and
on the latitudinal wavenumber, n. On the other hand, ε is proportional to the fre-
quency of stellar rotation (and radius) and inversely proportional to the equivalent
depth, h (and the surface gravitational acceleration, g). As the equivalent depth is
a function of the temperature gradient (see Figure 1) and has various values for
different vertical modes, the wave frequency also depends on the two parameters.

Fig. (13) exhibits the solutions of Eq. (63) with regards to m for the different
values of the temperature gradient. Solid lines show the first vertical modes of
Rossby, Rossby-gravity, and inertia-gravity waves for the temperature gradient of
ϵ = 0.39. Lower (upper) blue and red curves display the first vertical modes of
the Rossby (inertia-gravity) waves with a latitudinal wavenumber of n = 1 and
n = 2, respectively. The middle black curve corresponds to the Rossby-gravity
mode with n = 0. The dashed curves show the same modes for the temperature
gradient of ϵ = 0.35. The difference between the two temperature gradients is
clear, so that the larger temperature gradient leads to the lower frequencies of all
waves.

Fig. (14) presents the solutions of Eq. (63) with regards to m for the different
vertical modes. Solid (dashed) lines show the first (the second) vertical modes of
Rossby, Rossby-gravity, and inertia-gravity waves for the temperature gradient of
ϵ = 0.39. Lower (upper) blue and red curves display the Rossby (inertia-gravity)
waves with a latitudinal wavenumber of n = 1 and n = 2, respectively. The middle
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black curves correspond to the Rossby-gravity mode with n = 0. The difference
between the various vertical modes is distinct so that the higher vertical modes
lead to lower frequencies of all waves. Fig. (15) presents the solutions of Eq.
(63) with regards to m for the different vertical modes of Rossby waves in the case
of the temperature gradient ϵ = 0.39 for 3Ω⊙. Here the latitudinal wavenumbers
are n = 2 and n = 4 and displayed by solid and dashed lines, respectively. The
frequency difference of different vertical modes is clear.

As ε is also a function of angular frequency, then the wave frequency depends
on the stellar rotation. Fig. (16) presents the frequency of various vertical modes
of Rossby wave vs the stellar rotation. The Rossby wave frequency is inversely
proportional to ε, which means that the wave frequency normalized by the stellar
angular frequency is decreasing for faster-rotating stars, especially for the higher
vertical modes. It is also seen that the difference between the frequencies of dif-
ferent vertical modes decreases for faster-rotating stars.

Fig. (17) presents the solutions of Eq. (63) vs ε = 4Ω2R2/gh for Rossby waves
with with different toroidal (m) and latitudinal (n) wavenumbers. Equivalent depth
for particular vertical modes and temperature gradient in the stellar near surface
interior can be determined from Fig. (10). Therefore, the observed frequency in
light curves of a star with known rotation, surface gravity, and radius may deter-
mine the corresponding equivalent depth h from Fig. (17). Then Fig. (10) can
be used to find suitable vertical temperature gradient and vertical mode of Rossby
waves as well as the appropriate vertical structure of the waves. This could be an
important tool for future seismology of stellar interior by Rossby-type waves.

6. Discussion and conclusion

Growing data of stellar light curves obtained by recent space missions requires
improving indirect tools for the estimation of internal parameters. Acoustic and
gravity waves are obvious choices for asteroseismology, but it becomes increas-
ingly clear that the Rossby waves also have significant potential to be used for
probing stellar interiors (Aerts, 2021). The theory of stellar Rossby waves (or
r-modes) was developed using expansions with a small parameter for high-order
modes of rapidly rotating stars (Papaloizou & Pringle, 1978) and for low-order
modes in slowly rotating stars (Provost et al., 1981; Saio, 1982). On the other
hand, Lee & Saio (1997) and Townsend (2003) used traditional approximation to
separate the horizontal and vertical equations in order to obtain the Laplace tidal
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Figure 17: Frequency of Rossby waves vs ε = 4Ω2R2/gh. The black solid (dashed) curve cor-
responds to the Rossby-gravity mode with (n,m) = (0,−1) ((n,m) = (0,−2)). The blue solid
(dashed) curve corresponds to Rossby waves with (n,m) = (1,−1) ((n,m) = (1,−2)). The red solid
(dashed) curve corresponds to Rossby waves with (n,m) = (2,−1) ((n,m) = (2,−2)). The vertical
mode of the waves can be determined by corresponding equivalent depth, h, from Fig. (10) fixing
the vertical temperature gradient.

equation for horizontal variations. Then they solved the Laplace tidal equations
and obtained the dependence of wave frequency and separation constant. Then
one can find the separation constant for each wave frequency and use it to solve
the vertical equations to obtain the vertical structure of the modes. In the recent
paper (Albekioni et al., 2023a), we used the same formalism of separation, but
first solved the vertical equations for the linear temperature profile in free surface
boundary conditions and found the corresponding value of separation constant,
which is actually an equivalent depth of Rossby waves. Consequently, we de-
rived the oscillation spectrum of Rossby waves from the horizontal equations for
the first vertical mode and fixed vertical temperature gradient. It was found that
the equivalent depth derived from surface boundary conditions has a small value,
therefore corresponding horizontal solutions are concentrated around the equator
leading to the equatorially trapped waves. This solution justifies the use of Carte-
sian coordinates as the solutions and frequencies of equatorially trapped Rossby
waves are identical in rectangular and spherical considerations (Matsuno, 1966;
Longuet-Higgins, 1968; Zaqarashvili et al., 2021). On the other hand, the differ-
ence in periods of various vertical modes, e.g. period spacing pattern, is often
used to identify observed wave modes (Aerts, 2021) and hence is very useful in
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asteroseismology. Consequently, it is of vital importance to study various vertical
modes in the discussed formalism. Here we continue the similar study for various
values of temperature gradient and vertical overtones of waves.

Figure 1 shows the dependence of equivalent depth, which was obtained from
the solution of vertical equations using free boundary condition, on vertical tem-
perature gradient (|dT/dz| ∼ ϵ) for the first five vertical modes. The value of the
equivalent depth decreases for higher vertical overtones and for larger temperature
gradients. We note that ϵ = 0.4 corresponds to the adiabatic temperature gradi-
ent, therefore the radiative (or convectively stable) medium yields ϵ < 0.4. The
corresponding vertical structure of the modes is plotted in Figure 2 for different
temperature gradients. We see that the vertical wavelength decreases significantly
for higher overtones and imperceptibly for stronger temperature gradients. In all
cases, the amplitude of latitudinal velocity decreases with depth so that the Rossby
modes are concentrated near the surface layer with a thickness of 50 surface scale
height. Higher overtones penetrate slightly deeper. It must be noted that the ro-
tation kernels and vertical structure of m = 1 Rossby mode in the recent paper
by Van Reeth et al. (2018) showed only a slight decrease of the wave amplitude
with depth in upper layers and subsequent growth toward the center of stars for
solid body rotation. The difference between the results depicted in Figure 2 of Van
Reeth et al. (2018) and Figure 11 in the current paper arises due to the density
factor, ρ0. In Figure 2 of our paper, the displayed velocity does not include density
as indicated by the figure labels. But in Figure 2 of Van Reeth et al. (2018), the
rotation kernels incorporate density (Aerts et al., 2010), which leads to the men-
tioned discrepancy. If one plots the velocity with the factor of

√
ρ0 in Figure 2

in our paper, then one can find only a gradual decrease in amplitude with depth
in coincidence with Van Reeth et al. (2018). The absence of amplitude growth in
deeper layers in Figure 2 is probably caused due to the used linear temperature
gradient. The inclusion of differential rotation obviously will lead to new vertical
profiles of the waves.

Small values of equivalent depth lead to the parabolic cylinder equation for
horizontal direction with bounded solutions in terms of Hermite polynomials and
with corresponding dispersion relation of Rossby, Rossby-gravity, and inertia-
gravity waves. The latitudinal structure of the waves depends on the parameter
ε = 4Ω2R2/gh as shown by Eq. (63). Larger ε leads to the stronger equatorial
confinement of the waves. Figure 3 shows the latitudinal structure of the first three
vertical modes for different rotation rates. The waves are strongly trapped near the
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Figure 18: Spacing (∆P) vs period patterns for Rossby (upper panel, m = −1 and n = 2 mode) and
inertia-gravity (lower panel, m = 1 and n = 2 mode) waves for the vertical temperature gradient
of ϵ = 0.39 and the stellar angular frequency of Ω = 5Ω⊙ (i. e. the rotation period of ∼ 5.4 days).
Wave periods are calculated in the inertial frame. The first ten vertical modes are used to construct
the period-spacing patterns; the vertical order of the modes is increasing from left to right.
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equator for rapidly rotating stars: the waves are confined between latitudes of ±300

for 5 Ω⊙. In this paper, we consider the stars with outer radiative zones, which oc-
cupy the upper part of the Hertzsprung-Russel diagram. These stars generally have
rapid rotation compared to Ω⊙ due to the weak magnetic breaking (Kraft, 1967).
Therefore, the stars considered in this paper are fast rotators, hence the waves are
trapped around the equator for almost all modes and the value of the temperature
gradient.

The wave frequency strongly depends on ε, hence on the surface rotation fre-
quency and corresponding equivalent depth. As the equivalent depth is a function
of the temperature gradient, the wave frequency also hinges on it. Figure 4 shows
that the frequency of all wave modes significantly depend on the gradient, which
implies that observations may provide the estimation of the parameter. Wave fre-
quency also significantly depends on stellar rotation as seen from Figure 7 for the
Rossby node with m = −1 and n = 1. The dependence seems more important at
the slow rotation part of the interval but becomes imperceptible for rapid rotations.

Observations of light curve variations may provide asteroseismic sounding of
some parameters. Here we consider solid body rotation without magnetic field,
therefore we can estimate the vertical temperature gradient. Incorporation of dif-
ferential rotation (Gizon et al., 2020) and the magnetic field (Zaqarashvili, 2018)
in the model may widen the application further to magnetic field strength and the
differential rotation rate. The frequency of Rossby waves is smaller than the angu-
lar frequency of rotation, while the frequency of inertia-gravity waves is compa-
rable to the rotation frequency (see Figures 4-5). It should be noted that the wave
frequency is calculated in the rotating frame in this paper, therefore one needs to
transform it in the inertial frame in order to compare with observations. Transfor-
mation of frequency occurs with σobs = mΩ + σ. Hence, the Rossby waves with
m = −1 will have a slightly lower frequency compared to the rotational frequency
|σ| < Ω, while the waves with m = −2 will have the frequency in the interval of
Ω < |σ| < 2Ω.

We mentioned above that the vertical modes are important to construct the
period-spacing patterns, which are used to compare the theory with observations.
As an example, we plot the period-spacing patterns for Rossby and inertia-gravity
waves on Fig. 18 for a specific value of the temperature gradient, ϵ = 0.39. We
calculated the first ten vertical modes for the stellar angular frequency of Ω = 5Ω⊙
and the horizontal wavenumbers of n = 2 and |m| = 1. We see that the Rossby and
inertia-gravity waves show expected behavior as shown in the literature (Aerts,
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2021). This analysis may serve as another valuable tool to facilitate comparisons
between observations and theoretical predictions.

Observations of frequency in the light curves of stars can be compared with
the theoretical spectra of the waves. Figure 8 displays the dependence of wave
frequency on ε for several modes of Rossby waves with different m and n. The
observed frequency will then determine the corresponding equivalent depth h if
the radius, surface gravity, and rotational frequency of the star are known. Once
the equivalent depth is estimated, one can use Fig.10 to identify the corresponding
ϵ and vertical mode number of the waves. Consequently, one can estimate the
vertical temperature gradient and the vertical structure of different harmonics. This
methodology could potentially serve as an important tool for future asteroseismic
studies of stellar interiors.
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2.3 Paper III: Effect of latitudinal differential rotation on solar Rossby
waves: Critical layers, eigenfunctions, and momentum fluxes in the
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Abstract

Retrograde-propagating waves of vertical vorticity with longitudinal wavenum-
bers between 3 and 15 have been observed on the Sun with a dispersion relation
close to that of classical sectoral Rossby waves. The observed vorticity eigenfunc-
tions are symmetric in latitude, peak at the equator, switch sign near 20◦ – 30◦, and
decrease at higher latitudes.

We search for an explanation that takes solar latitudinal differential rotation
into account.

In the equatorial β plane, we studied the propagation of linear Rossby waves
(phase speed c < 0) in a parabolic zonal shear flow, U = −U ξ2 < 0, where
U = 244 ms−1 and ξ is the sine of latitude.

In the inviscid case, the eigenvalue spectrum is real and continuous, and the
velocity stream functions are singular at the critical latitudes where U = c. We
add eddy viscosity to the problem to account for wave attenuation. In the vis-
cous case, the stream functions solve a fourth-order modified Orr-Sommerfeld
equation. Eigenvalues are complex and discrete. For reasonable values of the
eddy viscosity corresponding to supergranular scales and above (Reynolds num-
ber 100 ≤ Re ≤ 700), all modes are stable. At fixed longitudinal wavenumber, the
least damped mode is a symmetric mode whose real frequency is close to that of
the classical Rossby mode, which we call the R mode. For Re ≈ 300, the atten-
uation and the real part of the eigenfunction is in qualitative agreement with the
observations (unlike the imaginary part of the eigenfunction, which has a larger
amplitude in the model).

Each longitudinal wavenumber is associated with a latitudinally symmetric R
mode trapped at low latitudes by solar differential rotation. In the viscous model, R
modes transport significant angular momentum from the dissipation layers toward
the equator.
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1. Introduction

In the atmosphere of Earth, Rossby (1939) waves are global-scale waves of
radial vorticity that propagate in the direction opposite to rotation (retrograde).
They originate in the conservation of vertical absolute vorticity, that is, the sum of
planetary and wave vorticity (see, e.g., Platzman, 1968; Gill, 1982).

Equatorial Rossby waves have recently been observed on the Sun with longi-
tudinal wavenumbers in the range 3 ≤ m ≤ 15 (Löptien et al., 2018; Liang et al.,
2019). In the corotating frame, their dispersion relation is close to that of classical
sectoral (l = m) Rossby waves, ω = −2Ω/(m+1), where Ω/2π = 453.1 nHz is the
equatorial rotation rate.

The observed variation of the eigenfunctions with latitude, however, differs no-
ticeably from Pm

m(sin λ) ∝ (cos λ)m, where λ is the latitude, which is the expected
answer for sectoral modes in a uniformly rotating sphere (e.g., Saio, 1982; Dami-
ani et al., 2020). Instead, the observed eigenfunctions have real parts that peak
at the equator, switch sign near 20◦ – 30◦, and decay at higher latitudes (Löptien
et al., 2018). Their imaginary parts are small (Proxauf et al., 2020).

An ingredient that is obviously missing in models of solar Rossby waves is lati-
tudinal differential rotation. The solar rotation rate decreases fast with latitude: the
difference between the rotation rate at mid-latitudes and at the equator is not small
compared to the frequencies of the Rossby waves of interest. For m larger than
5, we show that a critical latitude exists at which the (negative) wave frequency
equals the (negative) differential rotation rate counted from the equator.

To capture the essential physics while keeping the problem simple, we chose
to work in two dimensions and in the equatorial β plane. This simplification is
acceptable for wavenumbers that are large enough (about ≥ 6).

The stability and dynamics of parabolic (Poiseuille) shear flows in the pres-
ence of critical layers was summarized by Drazin & Reid (2004), for example.
Kuo (1949) included the β effect in the problem. In the inviscid case, critical
layers lead to a singular eigenvalue problem (see, e.g., (Balmforth & Morrison,
1995)). The stream functions are continuous but not differentiable (Sect.4), thus
they cannot be compared directly to actual observations of the vorticity. Because
we also wish to explain the lifetime of the modes (Löptien et al., 2018), we intro-
duce a viscous term in the Navier-Stokes equations to model damping by turbulent
convection. As shown in Sect. 2, this leads to a new equation for the stream func-
tion: an Orr-Sommerfeld equation whose coefficients are modified by the β effect.
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The viscosity removes singularities and the eigenfunctions are regular across the
viscous critical layer (see Sect. 3). To solve the eigenvalue problem accurately,
we use a numerical method based on the Chebyshev decomposition proposed by
Orszag (1971). As shown in Sect. 5, the eigenvalue spectrum includes a sym-
metric Rossby mode in addition to the other modes that are known to exist in the
β = 0 case (Mack, 1976). We focus on the eigenvalue problem here. We do not
discuss the nonlinear dynamics in the critical layers, which would require solving
the nonlinear evolution equation (e.g., Stewartson, 1977).

In addition to the practical advantages of studying 2D Rossby waves in the β
plane, the physics of this problem has been extensively discussed in Earth and
planetary sciences. In the terrestrial atmosphere and oceans, Rossby waves en-
counter critical layers (see Frederiksen & Webster, 1988; Vallis, 2006; ?). They
play a role in the global dynamics by transporting angular momentum through
Reynolds stresses, and they modify the mean flow (e.g., Bennett & Young, 1971;
Webster, 1973; Geisler & Dickinson, 1974).

Our model can be further extended to include the effect of the solar meridional
flow using the method of Orszag (1971), see Sect. 6. In Sect. 7 we compare
the predictions of the model to solar observations of the mode frequencies and
damping rates and to observations of the vorticity eigenfunctions. Finally, in Sect.
8 we discuss the implications of the model for angular momentum transport and
the dynamics of solar differential rotation.

2. Waves in a sheared zonal flow: Equations of motion in the
equatorial β plane

In the equatorial β plane, we study the propagation of 2D Rossby waves through
a steady zonal flow representative of solar differential rotation. Several β-plane
approximations have been proposed (see, e.g., Dellar, 2011). Here we choose the
sine transformation:

x = Rϕ, (64)
y = R sin λ, −R ≤ y ≤ R, (65)

where ϕ is longitude, λ is latitude, and R = 696 Mm is the solar radius. The
x coordinate increases in the prograde direction, and the y coordinate increases
northward. To first order in y/R, the x and y components of the velocity vector
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in the β plane are equal to their ϕ and λ components on the sphere (Ripa, 1997),
respectively.

The total velocity is the sum of the background zonal flow U(y)x̂ and the hori-
zontal wave velocity u(x, y, t) with

u(x, y, t) = ux(x, y, t)x̂ + uy(x, y, t)ŷ. (66)

By choice, U(0) = 0 at the equator. The latitudinal shear is specified by the
parabolic (Poiseuille) profile

U(y) = −U (y/R)2, (67)

where the amplitude U is chosen such that U(y) approximates the solar surface
differential rotation at low and mid-latitudes. From the standard solar angular
velocity profile given by Beck (2000), ∆Ω = −0.35[(y/R)2 + (y/R)4] µrad s−1, we
find that the value U = 244 m s−1 is a good choice, see Fig. 19.
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Figure 19: Parabolic zonal flow U (red curve, Eq. 67) in the frame rotating at the equatorial
rotation rate, which approximates the solar rotational velocity at the photosphere (blue curve).
The horizontal black lines indicate the phase speed of Rossby waves, c0 = −(β − U′′)/k2, for
longitudinal wavenumbers kR = 6 and kR = 10. At critical latitudes, U = c0.

The 2D Navier-Stokes equations in the equatorial β plane are
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(
∂

∂t
+ U

∂

∂x

)
ux + uyU′ + u·∇ux = −

1
ρ

∂p
∂x
+ ν∆ux + f uy, (68)(

∂

∂t
+ U

∂

∂x

)
uy + u·∇uy = −

1
ρ

∂p
∂y
+ ν∆uy − f ux, (69)

where ν is the viscosity, and the equatorial Coriolis parameter is f = βy with
β = 2Ω/R. The prime denotes a derivative, for example, U′ = dU/dy.

To enforce mass conservation, we introduce the stream function Ψ such that

ux =
∂Ψ

∂y
, uy = −

∂Ψ

∂x
. (70)

Assuming a barotropic fluid, we can eliminate the pressure term by combining the
two components of the momentum equation to obtain(

∂

∂t
+ U

∂

∂x

)
∆Ψ +

(
β − U′′

) ∂Ψ
∂x
+ (u·∇)∆Ψ = ν ∆2Ψ. (71)

3. Critical latitudes
3.1. Linear inviscid case: critical points

In the linear inviscid case, we search for wave solutions of the form

Ψ(x, y, t) = Re
{
ψ(y) exp[i(kx − ωt)]

}
. (72)

When the nonlinear and viscous terms are dropped, Eq. (71) becomes the
Rayleigh-Kuo equation (Kuo, 1949),

(U − c) (−k2ψ + ψ′′) +
(
β − U′′

)
ψ = 0, (73)

where c = ω/k is the phase speed. This equation differs from the RayleighLord
Rayleigh (1879) equation only through the β term. It can be rewritten as a
Helmholtz equation,

ψ′′ + K(y)ψ = 0, (74)

with
K(y) = −k2 +

β − U′′

U − c
. (75)
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The squared latitudinal wavenumber, K(y), is singular at the critical points y = ±yc

such that U(yc) = c. The critical points divide the low-latitude region where the
solution is locally oscillatory (K > 0 for |y| < yc) from the high-latitude regions,
where it is locally evanescent (K < 0 for |y| > yc).

Equation (73), supplemented by boundary conditions ψ(±R) = 0, is an eigen-
value problem that can be solved in the complex plane. It admits a continuum
of neutral modes with real eigenfrequencies. According to Rayleigh’s theorem
(adapted for the Rayleigh-Kuo equation, see Kuo, 1949), there is no discrete mode
because β−U′′ , 0 everywhere. We can thus solve the initial value problem given
by Eq. (73) for any particular real value of c to obtain the associated eigenfunction
(e.g., Drazin & Howard, 1966; Drazin et al., 1982; Balmforth & Morrison, 1995).
These eigenfunctions are singular at the critical points.

Because U′′ is constant in our problem and U(0) = 0, Eq. (75) implies that
each mode can be associated with a value of K(0) such that

c = −
β − U′′

k2 + K(0)
. (76)

For equatorial propagation, K(0) = 0 is a natural choice, and we may consider the
eigenvalue

c0 = −(β − U′′)/k2 (77)

as an example. In our case, β−U′′ = 1.12β, therefore waves propagate faster than
in the no-flow case. The critical points y = ±yc where U(±y) = c0 are given by

kyc =

√
βR2/U + 2 = 4.31. (78)

Thus, for kR > 4.31, there are critical latitudes at λ = ±λc, such that

λc = arcsin(4.31/kR). (79)

To obtain the eigenfunctions, Eq. (73) should be solved separately for |y| < yc and
|y| > yc. The analytical and numerical solutions are discussed in Sect. 4. The
stream function is continuous (uy = −ikψ is continuous), but its first and second
derivatives diverge at the critical layer (see, e.g., Haynes, 2003).

3.2. Viscous critical layer

Bulk viscosity removes singularities. The linear viscous equation for ψ is

(c − U) (−k2ψ + ψ′′) −
(
β − U′′

)
ψ =

iν
k

(k4ψ − 2k2ψ′′ + ψ′′′′). (80)
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For β = 0, this is Orr-Sommerfeld equation (Orr, 1907; Sommerfeld, 1909). Equa-
tion (80) is a fourth-order differential equation, which requires four boundary
conditions, such as ψ(±R) = 0 and ψ′(±R) = 0 for a no-slip boundary con-
dition. The critical layer of the inviscid case is replaced by a viscous critical
layer around y = ±yc. The width of this viscous layer, δ, is obtained by bal-
ancing the dominant viscous term with the dominant term on the left-hand side,
(U − c)ψ′′ ∼ νψ′′′′/k. Close to the viscous layer, we write d/dy ∼ 1/δ and
U − c ≈ U′(yc)(y − yc) ∼ (Uyc/R2)δ, so that the width of the viscous layer is
approximately

δ/R ∼ (kyc Re)−1/3, (81)

where
Re = RU/ν (82)

is the Reynolds number.
The width of the layer is controlled by Re. As discussed by Rüdiger (1989),

ν should be understood as an eddy viscosity due to turbulent convection. As an
example, we may estimate the Reynolds number associated with solar supergran-
ulation. For supergranulation, the turbulent viscosity ν ≈ 250 km2s−1 (Simon &
Weiss, 1997; Duvall, Jr. & Gizon, 2000) implies Re ≈ 700 and δ ≈ 0.07R for
kR = 10. Not surprisingly, the width of the viscous layer is comparable in this
case to the spatial scale of supergranulation.

3.3 Nonlinear critical layer

In order to assess whether it is legitimate to drop the nonlinear term (u·∇)∆Ψ
in Eq. (71), we estimate the width of the nonlinear critical layer δNL. It is obtained
by balancing the advection term k(U − c)ψ′′ and the nonlinear term uyψ

′′′. We find

δNL/R ∼
(
umax/U

)1/2
(kyc)−1/2, (83)

where umax is a characteristic velocity amplitude for the Rossby waves. On the
Sun, Liang et al. (2019) measured umax ≈ 2 ms−1 for the maximum latitudinal
velocity of a mode at the equator. For kR = 10, the width of the nonlinear critical
layer is δNL ≈ 0.04R.

Introducing the threshold Re∗ = (umax/U)−3/2(kyc)1/2, the ratio between the
widths of the viscous and nonlinear critical layers is

δ/δNL ≈ (Re/Re∗)−1/3. (84)
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For Re < Re∗ the critical layer is linear and dominated by dissipation over the
width δ. For kR = 10, we find Re∗ ≈ 3000, which is much larger than the Reynolds
number Re ≈ 700 estimated in the previous section for solar supergranulation. It is
therefore reasonable to study the linear problem, as we do in the remainder of this
paper. However, we caution that there is some uncertainty about the appropriate
value for the viscosity.

4. Inviscid modes of oscillations

In the inviscid case, the spectrum for the Rayleigh-Kuo equation, Eq. (73), is
real and continuous. We fix the value of c to c0 (Eq. 77) and compute the corre-
sponding eigenfunctions. There are two singular solutions, both real: a solution
that is symmetric in latitude and an antisymmetric solution. These solutions can
be obtained by solving the equation analytically or numerically in two distinct
intervals, 0 ≤ y < yc and yc ≤ y ≤ R.

In the inner region, we solve the ODE with the conditions ψ(0) = 1 and ψ′(0) =
0 to obtain the symmetric solution. For the region y > yc, we impose continuity
with the inner solution and use the boundary condition ψ(R) = 0. The symmetric
solution can be expressed as a series in each regions. We write ψ(y) =

∑
p≥0 apξ

2p

with ξ = y/R for |y| < yc and ψ(y) =
∑

p≥1 bp(ξ2 − 1)p for |y| > yc. The coefficients
ap and bp are computed by recurrence. when we set Set κ = kR and ξc = yc/R, the
inner solution is given by

a0 = 1, (85)
a1 = 0, (86)

ap =
2(p − 1)(2p − 3)ap−1 − κ

2ap−2

2ξ2
c p(2p − 1)

for p ≥ 2. (87)
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For the outer solution,

b2 = − b1/4, (88)

b3 = −
[κ2 + 3(1 − ξ2

c )]b2

6(1 − ξ2
c )

, (89)

bp = −
[(1 − ξ2

c )(2p − 3) + 2(p − 2)]bp−1

2(1 − ξ2
c )p

+
[κ2 − 2(p − 2)(2p − 5)]bp−2 + κ

2bp−3

4(1 − ξ2
c )(p − 1)p

for p ≥ 4. (90)

The coefficient b1 is chosen such that the solution is continuous at the critical
point.

To validate the series solution, we also solved the problem numerically. In the
inner region, we have an initial value problem that can be solved using classical
libraries, for example odeint from SciPy. In the outer region, the problem is a
boundary value problem that can be converted into an initial value problem using
the shooting method (Keller, 1968).

We find an excellent agreement between the analytical and the numerical so-
lutions, therefore we only plot the analytical solution in Fig. 20 for kR = 10.
The symmetric eigenfunction ψs switches sign before the critical latitude and
evanesces above it. The location of the critical layer is close to the zero-crossing of
the observed vorticity eigenfunctions from Löptien et al. (2018) and Proxauf et al.
(2020). Unfortunately, in the inviscid case, the vorticity ζ = k2ψ − ψ′′ diverges at
the critical latitude and thus the comparison with the observations is difficult.

We note that for each eigenvalue c = c0 an antisymmetric eigenfunction, ψa,
also exists. This solution can be obtained like above, but with different boundary
conditions at the equator. We set ψa(0) = 0 and ψ′a(0) = ψ′0, where ψ′0 can be cho-
sen to control the maximum value of ψa, for example unity. The other conditions
are the same as before, that is, ψa(±R) = 0 and ψa continuous at the critical point.
The antisymmetric solution can be expanded as ψa(y) =

∑
p≥0 Apξ

2p+1 for |y| < yc

and ψa(y) =
∑

p≥1 Bpξ(ξ2 − 1)p for |y| > yc. The coefficients Ap an Bp are again
obtained by recurrence. Figure 21 shows example antisymmetric eigenfunctions.
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Figure 20: Symmetric inviscid eigenfunctions for the eigenvalue c0 = −(β − U′′)/k2 and kR =
6, 8, 10, 12 and 14. The stars mark the critical points.

5. Viscous modes of oscillation
5.1. Numerical method

In order to remove the singularities at the critical latitudes, we now include
viscosity. The viscosity is specified through the Reynolds number, Re, which is a
free parameter in our problem. For example, Re = 700 for supergranular turbulent
viscosity.

To facilitate the numerical resolution of the modified Orr-Sommerfeld equa-
tion, Eq. (80), it is convenient to introduce dimensionless quantities. We define
ξ = y/R, κ = kR, and β̂ = βR2/U. The dimensionless eigenvalues ĉ = c/U and
eigenfunctions ψ̂(ξ) = ψ(y)/(RU) solve the equation

(ĉ + ξ2)D̂ψ̂ − (β̂ + 2)ψ̂ = i(κ Re)−1 D̂2ψ̂, (91)

where D̂ = −κ2 + d2/dξ2 is the Laplacian, and the prime now denotes derivation
with respect to ξ. For U = 244 ms−1, we have β̂ = 16.4. We consider values of the
dimensionless longitudinal wavenumber in the range 8 ≤ κ ≤ 15.

We follow the numerical approach of Orszag (1971), originally developed for
the Orr-Sommerfeld eigenvalue problem. We use the Matlab package Chebfun to
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Figure 21: Antisymmetric inviscid eigenfunctions for c = c0 and kR = 6, 8, 10, 12 and 14. The
stars mark the critical points.

project functions onto Chebyshev polynomials and to compute spatial derivatives
analytically (Driscoll et al., 2014). This package also provides practical tools to
solve differential equations and eigenvalue problems (only a few lines of codes are
needed).

To obtain the symmetric solutions, we solve the above eigenvalue problem on
[0, 1] with the boundary conditions

ψ̂′s(0) = ψ̂′′′s (0) = 0 and ψ̂s(1) = ψ̂′s(1) = 0. (92)

The antisymmetric solutions are obtained by setting

ψ̂a(0) = ψ̂′′a (0) = 0 and ψ̂a(1) = ψ̂′a(1) = 0. (93)

In both cases, the numerical solutions (eigenvalues and eigenfunctions) are com-
plex.

5.2. Spectrum

In Fig. 22 the eigenvalues c = cr + ici are shown in the complex plane for
κ = 10 and Re = 300. In the figure, these eigenvalues are normalized by |c0| > 0.
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Figure 22: Eigenvalues c = cr + ici in the complex plane for kR = 10 and Re = 300, normalized by
the reference eigenvalue |c0| = (β − U′′)/k2. The R mode is clearly identifiable (the least damped
mode), as are the three families of modes: the wall modes (A family), the center modes (P family),
and the damped modes (S family). The modes with symmetric eigenfunctions are shown with full
circles and those with antisymmetric eigenfunctions with open circles. All modes have cr < 0 and
ci < 0, i.e. they are stable and propagate in the retrograde direction. The vertical line corresponds
to the phase speed of the standard Rossby wave, cr = c0. The modes in each family are labeled
with integers that increase with attenuation.

All modes are stable because none of the imaginary parts of the eigenfrequencies
are positive. In the complex plane, the eigenvalues are distributed along three main
branches that correspond to different types of eigenfunctions. The same branches
appear in the standard plane Poiseuille problem; they were called A, P and S by
Mack (1976). Example eigenfunctions are displayed in Fig. 23 and Fig. 24. The
A branch, for which the eigenfunctions have large amplitudes at high latitudes,
refers to the “wall modes”. The P branch refers to the “center modes”, which os-
cillate near the viscous layers. The S branch corresponds to the “damped modes”
(Schensted, 1961). Schensted (1961) showed that the A and P branches have a fi-
nite number of eigenvalues and the S branch has an infinite number of eigenvalues.
She obtained approximate equations for the three branches. We labelled the modes
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Figure 23: Eigenfunctions for the symmetric modes R, P4, S2, and A6 (top row, ψs) and for the
antisymmetric modes P3, S3, and A5 (bottom row, ψa). See Fig. 22 for the position of the corre-
sponding eigenvalues in the complex plane. The real and imaginary parts are plotted with solid
and dashed lines respectively. The modulus of the eigenfunctions is normalized to one. By choice,
all imaginary parts are zero at the equator.

Figure 24: Stream functions in real space for all the modes shown in Fig. 23. The horizontal black
lines show the central latitudes of the viscous layers, λ = ±25◦ for kR = 10. The R mode (top left
panel) is confined to the equatorial region between the viscous layers.
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Figure 25: Left panel: R-mode dispersion relations ω = kcr for Re = 100, 300 and 700 (red, blue
and green). The dashed black curve is the reference dispersion relation ω = kc0. For comparison,
the frequencies of each mode m observed by Löptien et al. (2018) and Liang et al. (2019) are
multiplied by the factor (m + 1)/kR and plotted at abscissa kR (this simple conversion factor is
derived from the dispersion relations for classical Rossby waves in spherical and local Cartesian
geometries). Right panel: Plot of Γ = −2kci for Re = 100, 300 and 700. The observed full widths
at half maximum for each mode m are plotted at abscissa kR for comparison.

with integers in Fig. 22, such that even integers refer to the symmetric eigenfunc-
tions and odd integers to the antisymmetric eigenfunctions. As noted by Drazin &
Reid (2004), the even and odd modes in the A branch have nearly the same eigen-
frequencies. As seen in Fig. 24, the A modes have significant amplitudes only at
latitudes above the viscous layers.

Our problem differs from the standard plane Poiseuille problem through the
β term. As a result, one additional mode appears in the eigenvalue spectrum
(Fig. 22). This mode, which we call the R mode for an obvious reason, is sym-
metric and has an eigenfrequency whose real part is close to that of the classical
equatorial Rossby mode, cr ≈ c0. The R mode has the longest lifetime in the
spectrum. It is also the mode for which

∫ 1
−1 |ψ̂

′′|2dξ is the smallest. As shown in
Fig. 23, the real part of the R-mode eigenfunction resembles the eigenfunction of
the symmetric mode found in the inviscid case (Fig. 20), except that it is smooth
everywhere (no infinite derivative at the critical points). In the viscous case, the
complex R-mode eigenfunctions look like chevrons in real space (Fig. 24).

For some modes in the P branch, cr is close to c0 (P3 and P4), but these modes
have a far shorter lifetime than the R mode (by a factor of two to three at Re = 300)
and eigenfunctions that differ significantly from the observations.
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Figure 26: Stream function (top row) and vertical vorticity (bottom row) for R modes with kR = 10.
The Reynolds number is Re = 100, 300 and 700 from left to right. The solid and dashed curves
correspond to the real and imaginary parts. The shaded areas indicate the locations of the viscous
critical layers for each value of Re.
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5.3. R modes

Figure 25 shows the R-mode eigenfrequencies as a function of wavenumber
kR for different values of the viscosity. The value of the viscosity has a rather
weak effect on the dispersion relation. At fixed wavenumber, the real part of the
eigenfrequency changes with Re by less than 10 % over the range 100 ≥ Re ≥ 700.
On the other hand, the imaginary part ci changes significantly with the value of Re.
For Re < 700, the attenuation Γ = −2kci increases with k. For Re = 300, we find
that the theoretical mode linewidths (Γ/2π = −kci/π in nHz) are in the range 70 –
100 nHz, that is, they agree reasonably well with the observed mode line widths
(Γ/2π from Liang et al., 2019). The e-folding lifetime of a mode is given by
τ = 2/Γ.

The top row of Fig. 26 shows the R-mode stream functions for different values
of the Reynolds number. The normalization is such that at ξ = 0, the real part is
one and the imaginary part is zero. As Re decreases, the stream function varies
more slowly around the viscous layer, and its imaginary part decreases in ampli-
tude. The bottom row of Fig. 26 shows the vertical vorticity eigenfunctions. For
Re = 700, the vorticity varies fast near the viscous layer; here ψ′′ is largest.

6. Effect of the meridional flow

In addition to the rotational shear U, we consider the effect of the meridional
flow V on the R mode. The total velocity is

U(y)x̂ + V(y)ŷ + u(x, y, t), (94)

where the meridional flow is approximated by

V(y) = V
y
R

[
1 −

( y
R

)2
]
, (95)

with

V =
3
√

3
2
× 15ms−1 (96)

The value of V is chosen such that the maximum value of V is 15 ms−1 (near
latitude λ = 35◦).

When the meridional flow is included, the 2D linearized Navier-Stokes equa-
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Figure 27: Effect of the meridional flow V on the R-mode stream function for Re = 300 and
kR = 10 (red curves). For comparison, the blue curves show the stream function when only the
zonal flow U is included. The real and imaginary parts correspond to the solid and dashed curves.

tions in the equatorial β plane become(
∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
ux + uyU′ = −

1
ρ

∂p
∂x
+ ν∆ux + f uy, (97)(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
uy + uyV ′ = −

1
ρ

∂p
∂y
+ ν∆uy − f ux. (98)

When these equations are combined, the fourth-order differential equation for the
stream function (linear problem) is(

c − U +
iV ′

k

)
Dψ +

iV
k

Dψ′ −
(
β − U′′

)
ψ =

iν
k

D2ψ, (99)

with D = −k2 + d2/dy2. Compared to the previous problem with U only, the term
in front of Dψ is now complex, and an additional term involving the first and third
derivatives of the stream function appears.

We consider only the symmetric solutions and focus on the R mode. The
boundary conditions are ψ′(0) = ψ′′′(0) = 0 and ψ(R) = ψ′(R) = 0. Like be-
fore, we follow the procedure by Orszag (1971) to solve the eigenvalue problem.
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Figure 28: Real (blue solid lines) and imaginary (blue dashed lines) parts of the R-mode vertical
vorticity at kR = 10 after smoothing the maps of horizontal velocities with a 2D Gaussian kernel
with σ = 6◦. Three different values of Re are shown. For comparison, the red curves with points
show the ring-diagram helioseismic observations for m = 10 near the surface (Proxauf et al., 2020).

The eigenfrequencies are not affected significantly by the meridional flow. For
Re = 300 and kR = 10, we find c/|c0| = −0.986 − 0.446i when U and V are in-
cluded, compared to c/|c0| = −0.982 − 0.398i when only U is included. Figure 27
shows the real and imaginary parts of the R-mode eigenfunction at fixed kR = 10
for Re = 300. The meridional flow V has a small but measurable effect on the ψ
eigenfunction: it is stretched towards higher latitudes, and its real part has a larger
amplitude near the viscous layers.

7. Comparison with observations

Proxauf et al. (2020) measured and characterized the vorticity eigenfunctions
of the solar Rossby modes using a ring-diagram helioseismic analysis. To enable
a direct comparison between observations and theory, some smoothing must be
applied to the model because the observed flows have a resolution of only σ = 6◦

in ϕ and λ. After remapping the theoretical flows on a longitude-latitude grid, we
convolve uϕ and uλ with a 2D Gaussian kernel with standard deviation σ in both
coordinates. From the smoothed velocities, we compute the vertical vorticity. As
seen in Fig. 28, the smoothing has a significant effect on the theoretical vorticity
near the viscous layer.

The functional form of the real part of the observed eigenfunction was de-
scribed by several parameters by Proxauf et al. (2020): a full width at half maxi-
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mum W, the latitude λ0 at which the sign changes, the latitude λmin at which the
vorticity is most negative, and the value ζmin of the vorticity at λmin. These pa-
rameters are provided in Table 1 for three different values of kR in three different
cases: (a) smoothed theoretical vorticity when the zonal shear flow U is included,
(b) smoothed theoretical vorticity when U and V are both included and (c) ob-
servations from Proxauf et al. (2020). For Re = 300, we find that the widths for
cases (a) and (b) are within ≈ 3◦ of the observed values. For (a), the zero-crossing
latitude varies from λ0 = 17◦ for kR = 12 to λ0 = 21◦ for kR = 8. For (b) the
values of λ0 are slightly higher by ≈ 2◦, while the observed λ0 ≈ 28◦ does not vary
much with k. The theoretical values of λmin vary slightly faster with kR than λ0,
and theory agrees better with observations for kR = 8. The observed values of ζmin

range from −0.3 to −0.1, about half of the theoretical values. However, the values
of ζmin depend on Re, with more negative values for larger values of Re. On the
other hand, the values of W, λ0, and λmin in the table are not very sensitive to the
Reynolds number for 100 ≤ Re ≤ 700.

The imaginary part of the vorticity eigenfunctions is far more difficult to mea-
sure (Proxauf et al., 2020). It is significantly different from zero for some values
of m, but it is noisy, and its functional form cannot be described by a simple
parametric function. According to Proxauf et al. (2020), the sign of the observed
imaginary part appears to be positive for the lowest values of m and negative for
m > 5. The comparison provided in Fig. 28 shows that, at latitudes below the
viscous layer, the amplitude of the imaginary part is far higher in the model than
in the observations.

8. R-mode momentum fluxes

The complex eigenfunctions in our model imply that R modes transport a net
momentum flux in latitude. It is interesting to obtain an estimate of this momentum
flux (even though the model eigenfunctions have imaginary parts that differ from
the observations). The purpose of this exercise is to establish whether R modes
play a significant role in the balance of forces that shape differential rotation.

We consider a time-dependent zonal flow U(y, t) that evolves slowly according
to the x-component of the momentum equation averaged over x (see, e.g., Geisler
& Dickinson, 1974):

∂U
∂t
= −

∂

∂y
⟨uxuy⟩ + νU′′ + V(βy − U′), (100)
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Table 1: Parameters W, λ0, λmin and ζmin that characterize the functional form of the real part of the
R-mode vorticity eigenfunctions. Notes. The smoothed eigenfunctions from theory (Re = 300) are
given for the cases when (a) only the zonal flow U is included and (b) both U and the meridional
flow V are included. The theoretical values are compared with the observations from Proxauf et al.
(2020).

Case kR = 8 kR = 10 kR = 12
W (◦) U 17.6 13.1 11.2

U & V 20.2 15.8 13.1
Obs. 17.1 ± 0.8 14.7 ± 1.1 13.8 ± 1.4

λ0 (◦) U 21.1 18.4 17.5
U & V 24.8 20.2 19.4
Obs. 25.8 27.8 ± 1.6 28.9 ± 1.0

λmin (◦) U 29.3 24.8 22.9
U & V 32.9 27.4 24.8
Obs. 36.5 ± 1.8 34.5 ± 2.1 39.8 ± 1.8

ζmin U −0.69 −0.35 −0.17
U & V −0.86 −0.49 −0.28
Obs. −0.28 −0.11 −0.14

where the prime denotes a y-derivative and angle brackets ⟨·⟩ denote the average
over x. We used ∂xux + ∂yuy = 0 to obtain the term involving ⟨uxuy⟩ on the right-
hand side of the equation. The various terms in Eq. (100) have been discussed in
detail by Rüdiger (1989) in spherical geometry. These terms must balance exactly
to explain the steady-state differential rotation.

The horizontal Reynolds stress has two components, the first due to rotating
turbulent convection (the Λ effect), and the second due to the Rossby waves,

⟨uxuy⟩ = ⟨uxuy⟩Λ + ⟨uxuy⟩R. (101)

We estimate ⟨uxuy⟩R in the model for a single R mode. It is related to the stream
function through

⟨uxuy⟩R= −

〈
∂Ψ

∂y
∂Ψ

∂x

〉
= −

〈
Re

(
ψ′eik(x−crt)−t/τ

)
Re

(
ikψeik(x−crt)−t/τ

)〉
= −

k
2

Im
(
ψ′ψ∗

)
e−2t/τ =: Qxy e−2t/τ, (102)

where τ is the mode lifetime mentioned in Sect. 5.3. We normalize the R-mode
stream function such that the velocity amplitude at the equator is equal to its ob-
served value,

kψ(0) = umax ≈ 2ms−1. (103)
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Figure 29: Horizontal Reynolds stress Qxy vs. latitude for R modes with kR = 8, 10 and 12. The
Reynolds number is Re = 300, and mode amplitudes were normalized according to Eq. (103). Both
the zonal flow U and the meridional flow V were included to compute the mode eigenfunctions.
The stars show the locations of the viscous critical layer for the different values of kR.

The Reynolds stress Qxy is plotted in Fig. 29 for R modes with Re = 300 and kR =
8, 10 and 12. We find that Qxy < 0 in the north, below the viscous critical layer. For
example, for kR = 10, Qxy reaches the minimum value of −2 m2s−2 at latitude 20◦.
This means that R modes transport angular momentum from the dissipation layer
to the equator, or in the other words, they reinforce latitudinal differential rotation.
This is the expected result for idealized Rossby waves incident on a critical layer
(see, e.g., Vallis, 2006).

Summing Qxy over several R modes would lead to a horizontal Reynolds stress
that is comparable in amplitude and sign to the value reported at large spatial
scales by Hathaway et al. (2013). On the other hand, Qxy has the opposite sign and
is much smaller in amplitude than the (viscous) Reynolds stress associated with
convective flows at supergranulation scales (Hanasoge et al., 2016, their figure 10).
The acceleration −∂yQxy is plotted in Fig. 30 and compared to the measurements
described above. The Rossby waves in our model contribute to the equatorial
acceleration at a significant level.

9. Conclusion

Using a simple 2D setup in the β plane, we have shown that latitudinal differ-
ential rotation and viscosity must play an important role in shaping the horizontal
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Figure 30: Equatorial acceleration −∂yQxy obtained by superposition of nine viscous R modes
for kR = 7, 8, . . . 15 (solid blue curve). The dot-dashed and dashed curves show −∂y⟨uxuy⟩ for
supergranulation (Hanasoge et al., 2016, their figure 10) and larger-scale convection (Hathaway
et al., 2013), respectively. For reference, the solar “torsional oscillation” has a typical amplitude
of about ±5 ms−1 (see, e.g., Lekshmi et al., 2018).

eigenfunctions of global-scale Rossby modes. Viscous critical layers form around
latitudes where c = U. We find that only one symmetric mode, which we called
the R mode, has an eigenvalue whose real part is close to that of the classical
sectoral Rossby mode and whose imaginary part is close to the observed value
when Re ≈ 300. The real part of the vorticity eigenfunctions can be made to agree
qualitatively with solar observations (unlike the imaginary part).

Treating this problem as a stability problem for a viscous Poiseuille flow in the
β plane enabled us to connect our results to prior results in the fluids literature. For
example, we used a well-established method to solve the Orr-Sommerfeld equa-
tion numerically, and we easily identified the known families of modes A, P, and S
in the complex plane (eigenvalues and eigenfunctions). A new aspect of our work
is that we identified the viscous R mode, which owes its existence to the β term
in the equation. We find that the combination of the shear flow and the viscosity
lead to chevron-shaped R-mode eigenfunctions, and thus to nonzero angular mo-
mentum transport by R modes. In our model, horizontal Reynolds stresses due
to R modes lead to significant equatorial acceleration. Another original aspect of
our work is that we studied the effect of the solar meridional flow on R modes.
We found that the meridional flow affects the eigenfunctions to measurable lev-
els. Reynolds stresses have significantly larger amplitudes when the meridional
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flow is included, although the meridional flow plays a much smaller role than the
differential rotation in shaping the eigenfunctions.

Sophisticated 3D models (but without background shear flow) also include
Rossby waves as a possible mechanism to produce equatorial super-rotation in the
atmospheres of planets (e.g., Liu & Schneider, 2011; Read & Lebonnois, 2018)
and exoplanets (e.g., Showman & Polvani, 2011). Clearly, the present work will
have to be extended to three dimensions (see, e.g., Watts et al., 2004, for the eigen-
values in the inviscid case) to account for the radial gradients of solar rotation
measured by helioseismology. A better understanding of Rossby waves will also
benefit from more realistic numerical experiments (see Bekki et al., 2019). Fi-
nally, we note that the model developed here can be used to estimate the temporal
changes in the Rossby wave frequencies caused by the solar-cycle variations in the
zonal flows (Goddard et al., 2020).
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3 Thesis discussion and conclusion

In recent years, Rossby waves attracted increased interest within the astrophysical
research community. The growth of interest is related to the extensive data gath-
ered by space missions, advances in data analysis techniques, and the development
of new astrophysical areas such as asteroseismology. Following the observations
of Rossby waves on the Sun (Löptien et al., 2018; Liang et al., 2019) and early-
type stars (Van Reeth et al., 2016), there has been significant interest in developing
tools to study the behavior of the waves inside stellar interiors. Theoretical study
of r-modes requires consideration of certain approximations to solve the problem
by analytical or numerical methods. Previous research mostly considered a slow
rotation limit with corresponding expansion with a small parameter to get low-
order Rossby wave solutions in spherical coordinates (Provost et al., 1981; Saio,
1982; Damiani et al., 2020)). Rossby waves were also studied for rapid rotation
but only for high-order harmonics (Papaloizou & Pringle, 1978). On the other
hand, it is important to consider a 3D problem for a star with any rotation rate and
obtain a full spectrum of solutions. This thesis aimed to study the Rossby waves
in three dimensions (horizontal + vertical) and to understand the potential impact
of the waves on the dynamics of stellar interiors.

We initially incorporated latitudinal differential rotation and viscosity into the
problem to investigate the dynamics of Rossby waves on a simple 2D β-plane
(Gizon et al., 2020). The analysis provided a fundamental understanding of solar
Rossby waves and enabled a comparison of theoretical results with observations
obtained by Löptien et al. (2018). We first addressed the inviscid case, therefore
eigenvalues were real and continuous, and velocity stream functions exhibited a
singularity at the critical latitude. Upon introducing viscosity, the eigenvalues
became complex and discrete. Our findings indicated that the real parts of the vor-
ticity eigenfunctions could align well with observed modes, unlike the imaginary
part, when Re ≈ 300. The presence of viscosity and horizontal shear flow resulted
in angular momentum transport toward the equator by Rossby waves. Addition-
ally, the impact of meridional flow on the dynamics of Rossby waves has been
explored. The impact was found to be significant but smaller compared to the in-
fluence of latitudinal differential rotation. This study provided valuable insights
into the dynamics of Rossby waves in the presence of latitudinal differential rota-
tion on a 2D plane.

In the following two papers (Albekioni et al., 2023a,b), we developed a three-
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dimensional model considering vertical stratification of density and temperature.
We used a traditional approximation of linear fluid equations in a rotating sys-
tem and considered a rectangular frame. This method is widely used to study the
equatorially trapped Rossby waves in Earth’s atmosphere and oceans (Lindzen,
1967). The Cartesian coordinate system significantly simplifies the mathematics,
while the dispersion relations of the waves are the same as those obtained in the
spherical geometry (Matsuno, 1966; Zaqarashvili et al., 2021). To obtain the dis-
persion relations and vertical solutions of the waves, we employed the method of
separation of variables, which allowed us to split the general equations in radial
and horizontal parts connected by the separation constant h. From this stage, two
different developments are possible. The first development considers solving the
horizontal equations in corresponding boundary conditions and finding the sepa-
ration constant, h. Then h can be used to solve the vertical equations and to obtain
the vertical structure of the solutions. The solutions are usually called ”forced
oscillations” in the Earth context. Lee & Saio (1997) and Townsend (2003) used
the spherical hydrodynamic equations in the traditional approximation to find the
”forced oscillations” in stellar interiors. The second development considers solv-
ing the vertical equations in appropriate boundary conditions to find the separation
constant, which then can be used to find the solutions of horizontal equations with
corresponding dispersion relations. The solutions are called ”free oscillations” in
the Earth context. We used the second method and studied the free oscillations of
Rossby waves in vertically stratified stellar interiors.

Vertical temperature gradient plays a significant role in shaping the stellar struc-
ture. Sub-adiabatic gradients usually lead to the radiative transfer of energy hence
it yields the radiative envelope. While the super-adiabatic gradients lead to the
convective envelope. We employed the linear vertical temperature gradient, which
is a good approximation to show the general properties of Rossby waves in strat-
ified fluids. The linear temperature gradient leads to the Bessel equation for the
sub-adiabatic case (see Eq.35 in Paper I and Eq. 58 in Paper II) and to the mod-
ified Bessel equation for the super-adiabatic case. Then the solutions of vertical
equations were obtained in terms of Bessel (modified Bessel functions) using ap-
propriate boundary conditions at the stellar surface. We started to solve the first
case of a sub-adiabatic temperature gradient, which corresponds to the radiative
early-type stars with masses of 1.5 > m⊙. The next step obviously is to repeat the
calculations for solar-type stars with a slightly super-adiabatic temperature gradi-
ent in the outer envelope. This will be done in the future as outlined below.
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At the surface, we used a free boundary condition, which implies that the La-
grangian pressure vanishes at the surface. Note that the close boundary condition
(i.e. when the vertical velocity vanishes at the surface) also gives the same so-
lutions. both boundary conditions yield an infinite number of discrete values for
the separation constant h, thereby leading to an infinite number of vertical modes.
Each value of the separation constant, hence each vertical mode, corresponds to
particular solutions of the horizontal equation with horizontal wavenumbers and
frequencies governed by the dispersion equation. The horizontal solution must
satisfy the polar boundary conditions i.e. should be bounded at poles. It is found
that the horizontal solutions of Rossby waves are governed by the parabolic cylin-
der equation, therefore they exponentially decrease towards the poles i.e. they are
trapped near the equator.

Paper I (Albekioni et al., 2023a) was focused on the first five vertical modes that
satisfy both vertical and latitudinal boundary conditions. These modes demon-
strate oscillatory behavior and penetrate to an approximate depth of 50 H0, where
H0 is the surface scale height. This height is around 300 km in conditions of
solar surface gravity and a surface temperature of about 10,000 K. The vertical
wavelength of these modes is influenced by the vertical temperature gradient, rep-
resented as ϵ. In environments where ϵ is smaller, indicating the strongly sub-
adiabatic environment, the wavelength is shorter, and the waves are predominantly
concentrated near the surface. On the other hand, when the temperature gradient
approaches the adiabatic limit (ϵ = 0.4), the wavelength of the modes increases up
to ten times. Through examining various values of the vertical temperature gradi-
ent and different vertical modes derived from both free and closed boundary con-
ditions, we determined that the waves are typically confined within approximately
15 Mm of the surface area. The latitudinal solutions and dispersion relations of the
problem significantly depend on the parameter ε = 4Ω2R2/gh, whereΩ represents
the rotation frequency of a star, R is the radius, and g is the surface gravitational
acceleration.

As the massive stars located in the upper part of HRD are known to have faster
rotation rates, we intended to study how different stellar rotation frequencies and
vertical temperature gradients influence the horizontal and vertical structures of
Rossby waves. Paper II (Albekioni et al., 2023b) deals with different sub-adiabatic
temperature gradients from ϵ = 0.2 to ϵ = 0.4. This paper includes vertical struc-
ture plots and a detailed examination of latitudinal modes. It was found that faster
rotation leads to more pronounced trapping of waves near the equator. For a rota-
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tion rate of Ω = 5Ω⊙, the waves are found to be confined within ± 30 degrees of
latitude. The wave frequency also shows a significant dependence on the stellar
rotation rate. This dependence is more noticeable at slower rotation rates but be-
comes less apparent with rapid rotations. Vertical modes are crucial for construct-
ing period-spacing patterns, which are usually used to correlate the theory with
observations. For instance, we plotted the period-spacing patterns for Rossby and
inertia-gravity waves for ϵ = 0.39. We calculated the first ten vertical modes for a
stellar angular frequency of Ω = Ω⊙.

As previously mentioned, the rate of the temperature gradient significantly in-
fluences the equivalent depth, h, which in turn defines the vertical structure and
frequency of the modes. Therefore, systematic observations of wave frequency in
stars can facilitate the estimation of internal stellar parameters. By determining
the equivalent depth of a specific mode, one can approximately evaluate the verti-
cal temperature gradient within the stellar interior. This approach may provide a
useful tool in the field of stellar seismology.

Several key points remain to be addressed in the near future:
1) Our analysis concerned only early-type stars with outer radiative envelopes.

It is relatively simple to repeat the whole analysis for solar-like stars with outer
convective envelopes. The vertical structure of Rossby waves then will be changed
from the ordinary Bessel functions to the modified Bessel functions, which will
obviously modify the separation constant and hence the dispersion relation of the
waves. It is of significant importance to compare the resulting vertical structure
and dispersion relations with the dynamics of solar Rossby waves as obtained by
Bekki et al. (2022).

2) Our 3D analysis used the simplest solid body rotation. On the other hand, the
differential rotation significantly affects the dynamics of Rossby waves including
the dispersion relations and stability (Zaqarashvili et al., 2010; Gizon et al., 2020,
2021). We plan to include the latitudinal differential rotation in the formalism
and solve the resulting equations for radiative stars. Horizontal equations will
probably remain similar to that of those studied by Gizon et al. (2020), therefore
the analysis will result in the influence of latitudinal differential rotation on the
spectrum of 3D Rossby waves. Then the systematic observations of the frequency
of the waves in other stars may lead to the estimation of stellar differential rotation,
which is a challenging task in nowadays astrophysics. The convective stars will
probably give similar results as obtained by Gizon et al. (2021).

3) Our 3D analysis excluded the influence of magnetic fields. However, it was
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shown that magnetic fields play a vital role in shaping the dynamics of Rossby
waves (Zaqarashvili et al., 2007; Márquez-Artavia et al., 2017; Zaqarashvili, 2018;
Dikpati et al., 2018, 2020). We plan to include the horizontal magnetic field in the
calculations and study its influence on the dispersion relations and vertical stric-
tures of the Rossby waves in the stellar interior. Then the combination of theoreti-
cal results and observations may provide a tool for the estimation of magnetic field
strength in stellar interiors hence making a big step forward in asteroseismology.
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Proxauf, B., Gizon, L., Löptien, B., et al. 2020, , 634, A44

RayleighLord Rayleigh. 1879, Proc. London Math. Soc., s1-11, 57

Read, P. L. & Lebonnois, S. 2018, Annual Review of Earth and Planetary Sciences,
46, 175

Ripa, P. 1997, Journal of Physical Oceanography, 27, 633

Rossby, C. G. 1939, Journal of Marine Research, 2, 38
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