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მაგნიტური ველები განჭოლავენ სამყაროს სხვადასხვა მასშტაბებზე; ისინი დაიკვირვება როგორც

“პატარა”, ვარსკვლავებისა და პლანეტების ასევე კოსმოლოგიურ, გალაქტიკებისა და გალაქტიკური

კლასტერების მასშტაბებზეც. სხვადასხვა დაკვირვებითი მეთოდები (მაგ., რომლებიც იყენებენ ფარა-

დეის ბრუნვის ეფექტს ან/და დიფუზურ რადიო გამოსხივებას გალაქტიკური კლასტერების მასშტა-

ბებზე) აჩვენებენ, რომ მაგნიტური ველების სიდიდე მიკროგაუსის რიგისაა და მათი კორელაციური

სიგრძე აღწევს ათეულ კილოპარსექს გალაქტიკურ კლასტერებში.

ითვლება რომ ასეთი დიდმასტაბოვანი (ე.ი., კოსმოლოგიურ მასშტაბებში არსებული) მაგნიტური

ველები წარმოიქმნა სუსტი, ჩანასახოვანი მაგნიტური ველების (“seed magnetic fields”) გაძლიერე-

ბის შედეგად. ეს ჩანასახოვანი ველები კი შეიძლება დაგენერირებულიყო ასტროფიზიკური ან კოს-

მოლოგიური (იგივე “პირველადი”, “primordial”) გენერაციის მექანიზმით და შემდგომ უნდა გაძლიე-

რებულიყო დიდმასშტაბოვანი სტრუქტურის ფორმირებისას (რათა მიეღწია დაკვირვებად, მიკროგა-

უსის სიდიდისთვის მაგ. გალაქტიკურ კლასტერებში). ბლაზარების სპექტრების ბოლოდროინდელი

დაკვირვებები თავსებადია არანულოვან მაგნიტური ველების არსებობასთან კოსმოსურ სიცარიელე-

ებში (cosmic voids). ეს კი თავის მხრივ ინტერესს აღრმავებს მაგნიტური ველების წარმოშობის და

ევოლუციის საკითხთან დაკავშირებით; კერძოდ, შესაძლებელია რომ მაგნიტური ველები დაგენერი-

რებულიყოლოკალურად, პირველი სტრუქტურების (ე.ი., პირველი ვარსკვლავები, გალაქტიკები, ა.შ.)

წარმოშობისას პატარა მასშტაბებში (ასტროფიზიკური მექანიზმი) და შემდგომ “გადატანილიყო” ასეთ

დიდ მასშტაბებზე? თუ მოსალოდნელია რომ მაგნიტური ველები არსებობდა ადრეულ სამყაროშივე

(გენერაციის კოსმოლოგიური მექანიზმი) და შემდგომ ევოლუცირებდნენ სამყაროს ევოლუციასთან

ერთად? ბლაზარების სპექტრის დაკვირვებები თანხმობაშია პირველადი მაგნიტური ველების არსე-

ბობასთან, ე.ი., ველებისა რომლებიც დაგენერირდა ადრეულ სამყაროში და რომელთაც პირველად

მაგნიტურ ველებსაც უწოდებენ (primordial magnetic fields).

პირველადი მაგნიტური ველების კვლევა საინტერესოა იმ მხრივაც რომ ასეთი კვლევები შესაძ-

ლოა დაგვეხმაროს სტანდარტული კოსმოლოგიური მოდელის მიღმა არსებული თეორიების შემოწმე-

ბაში. თეზისში წარმოდგენილ კვლევებში შევისწავლეთ პირველადი მაგნიტური ველების ევოლუცია

სამყაროს დიდმასშტაბოვანი სტრუქტურის ფორმირებისას კოსმოლოგიური, მაგნეტოჰიდროდინამი-

კური (მჰდ) კოდის ENZO-ს გამოყენებით. ჩვენს შრომაში ასევე გავითვალისწინეთ მაგნიტური ველე-

ბის ევოლუცია რეკომბინაციამდელ ეპოქაში (ე.ი., მათი ევოლუცია მჰდ ტურბულენტურ რეჟიმში). ამ

მეთოდის მიზანია პირველადი მაგნიტური ველების ევოლუციის სრული სურათის დანახვა ძალიან ად-

რეული სამყაროდან დღემდე. ჩვენ შევისწავლეთ ისეთი პირველადი მაგნიტური ველები, რომლებიც

შეიძლება დაგენერირებულიყო ინფლაციის ან ფაზური გადასვლების ეპოქაში. ჩვენმა სიმულაციებ-

მა აჩვენა, რომ მაგნიტური ველები ევოლუცირებენ განსხვავებულად იმის მიხედვით თუ როგორია
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მათი საწყისი სტრუქტურა (განაწილება) დიდ მასშტაბებში. კერძოდ, თუ ველები ინფლაციურია და

გააჩნიათ დიდი კორელაციური სიგრძეები მაშინ მათი გაძლიერება სტრუქტურის ფორმირებისას უფ-

რო ეფექტურად ხდება იმ ველებთან შედარებით რომელთა კორელაციური სიგრძეები გალაქტიკური

კლასტერების მასშტაბის რიგისაა.

მიმდინარე და მომავალი დაკვირვებები საშუალებას მოგვცემს შევადაროთ ჩვენი თეორიული შე-

დეგები დაკვირვებებს და ვეძებოთ პირველადი მაგნიტური ველების გენერაციის კვალი დღევანდელი

მაგნიტური ველების განაწილებაში. თეზისში წარმოდგენილი შედეგები მნიშვნელოვანია სწორედ ამ

მხრივ, ე.ი., პირველადი მაგნიტური ველების დაკვირვებითი ანაბეჭდების შესასწავლად მაგალითად

ბლაზარების სპექტრზე (მომავალი Cherenkov Telescope Array-ს (CTA) მონაცემების გამოყენებით) და

გალაქტიკური კლასტერების ფარადეის ბრუნვის მონაცემებზე (Square Kilometre Array (SKA)-ს დაკ-

ვირვებების გამოყენებით).

2



Abstract

Magnetic fields permeate our Universe on all cosmic scales: from planets and stars to the
large-scale fields found in galaxies and galaxy clusters. Different observational methods,
such as the ones using the Faraday rotation effect as well as the diffuse radio emission
(detected in the form of radio halos and radio relics), infer a field strength of the order
of microGauss and coherence scales reaching a few tens of kpc in galaxy clusters. It is
commonly assumed that the observed fields today are originated from either astrophysi-
cal or cosmological (primordial) magnetic seeds. The observations of blazar spectra by
the Fermi Gamma Ray Observatory provide an intriguing possibility of detecting very
weak magnetic fields in cosmic voids. This poses an exciting avenue for studying the
generation mechanisms and evolution of observed large-scale-correlated magnetic fields.
Notably, blazar spectra observations favour primordial magnetogenesis. In the primor-
dial scenario, magnetic fields originating in the early Universe, i.e., Primordial Magnetic
Fields (PMFs) can have volume filling fractions close to unity and thus, are good candi-
dates for explaining the possible magnetisation of cosmic voids.

Primordial magnetogenesis has gained a lot of attention in the last decades as a poten-
tial probe of physics beyond the Standard Model. In our research, we combined our cur-
rent understanding of the generation scenarios and pre-recombination evolution of PMFs
with state-of-the-art magnetohydrodynamic (MHD) cosmological simulations to study
their evolution during structure formation. Our brand new approach aims at reconstruct-
ing a whole picture of the evolution of inflation- and phase-transition-generated PMFs
from the very early Universe till the current epoch. Our simulations reveal the distinctive
amplification nature of initially small-scale, phase-transitional and large-scale, inflation-
ary fields during the formation of massive structures. Our studies argue in favour of
distinguishing between different primordial magnetogenesis scenarios on galaxy-cluster
as well as on filaments and cosmic voids’ scales.

Current and future radio and gamma-ray astronomy are promising for constraining
the magnetogenesis scenarios assuming we have a comprehensive study of PMFs that
projects their evolution history into the present-day observational signatures. The ob-
servational imprints of PMFs found in the research works of this thesis are relevant for
the forthcoming large surveys, such as the ones with the Square Kilometre Array (SKA)
and Cherenkov Telescope Array (CTA, in tandem with the Fermi Gamma-ray space tele-
scope). The results of our research program will have implications for many areas of
research, including the early Universe physics, high-energy astrophysics, MHD cosmo-
logical simulations, and large-scale structure formation.
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1.1 Overview
Our Universe appears to have a spider web-like structure on cosmological scales. This
pattern of the Universe, known as the cosmic web, is a complex network of giant bubble-
like voids, sheets, and filaments where the latter itself is a collection of galaxies and
galaxies clusters that occupy the nodes of the large-scale structure. According to the
most accepted paradigm, the cosmic web has formed from tiny density perturbations that
is observed in the relic, Cosmic Microwave Background Radiation (CMBR)1 coming
from the early Universe. These primordial density fluctuations then turned into observed
structures through hierarchical structure formation.

It turns out, that the cosmic web from small (i.e., planets and stars, [30, 31]) to large
scales (galaxies and galaxy clusters, [32, 33]) is permeated by coherent magnetic fields.
Different observational techniques show the ordered, large-scale morphology of these
fields with the strengths of µG and correlation lengths reaching a few tens of kpc in
galaxy clusters (see e.g., Refs. [34, 35]).

Most of what we know about such large-scale-correlated, extragalactic magnetic fields
(EGMFs) comes through the detection of radio waves. Recently, diffuse radio emission,
visible through synchrotron radiation, has also been detected in the region connecting the
pairs of galaxy clusters [1, 2, 36, 37]. These observations show the magnetisation of the
shortest filamentary structures. At even larger scales, in cosmic voids, such measurements
are difficult because of the low density of these regions. However, the new technique that
uses the observations of high-energy γ-rays from distant blazars is most promising for
probing the magnetisation of cosmic voids. The idea of this new technique is that suffi-
ciently strong magnetic fields in voids modify the low-end tail (GeV range) of the blazar
spectrum by affecting the trajectories of charged particles (deposited in the intergalactic
medium (IGM), along the LOS from the source to the observer). The observed deficit in
the GeV emission in the spectra of some of the blazars has imposed a lower bound (of
the order 10−16G) on the strength of magnetic fields in these rarified cosmic regions.

Understanding the origin of cosmic magnetism is one of the challenging questions of
modern astrophysics and cosmology. It is commonly assumed that the observed large-
scale fields results from the amplification of weak seed magnetic fields. Two broad
classes of seed magnetic field generation are generally considered: (1) an astrophysi-
cal, or bottom-up scenario, where the observed magnetic fields have their origin in an
initial weak seed field produced within local sources (e.g., within first stars), and then
amplified and transferred to larger scales [38, 39]; and (2) a primordial (cosmological),
or top-down scenario, where a seed magnetic field is generated in the early Universe,
during epochs preceding the structure formation [40]. Regardless of the magnetogenesis
scenario, magnetic fields must have been significantly amplified to reach the observed
strengths in galaxies and galaxy clusters; the physical mechanisms of the amplification
of weak seed fields during structure formation are the adiabatic contraction and turbulent
small-scale dynamo. The latter is a preferred the mechanism for explaining the efficient
amplification of the fields on galaxy (see e.g., [41–43]) and galaxy cluster scales (see
e.g., [44–47]). It is also plausible that the amplification of weak seed fields occurred via
the combined effect of these two.

It is apparently difficult to create magnetic fields in the classical magnetohydrody-

1We note that basic cosmological concepts including CMBR, redshift, homogeneity
and isotropy of the Universe as well as the short description of notable events of the
Universe are described in Chapter 2.
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namic (MHD) limit since the plasma does not provide a source term for the magnetic
field generation; i.e., if magnetic field is zero at initial time, it will be zero at all later
times. In the earlier works of Biermann [48] and Harisson [49] this limitation has been
evaded by taking into account the fact that positively and negatively charged particles
do not have identical properties. These so-called cosmic battery mechanisms fall under
the category of astrophysical scenarios of the seed field generation (although, Biermann’s
mechanism has also been applied in the early Universe setting). It should be noted that
astrophysical seed magnetic fields, i.e., generated locally on small scales, require addi-
tional mechanisms of magnetic field transport into larger scales in order to explain the
large coherence scales of the observed fields. These transfer mechanisms usually include
star formation and outflows from an active galactic nuclei (AGN, see e.g., Refs. [50–53]).

In the primordial scenario, on the other hand, magnetic fields originating in the early
Universe, i.e., PMFs, could be generated during or after inflation. The inflationary mag-
netogenesis assumes that vacuum fluctuations of an electromagnetic field give rise to a
weak seed field which then grows (see Refs. [54, 55] for pioneering work). The coher-
ence scale of the quantum-mechanically produced PMF can be stretched on superhorizon
scales whilst breaking the conformal invariance of electromagnetic action. Inflationary
PMFs with large coherence scales might have a scale-invariant spectrum (i.e., most of
the magnetic energy is concentrated on large scales) or they can be uniform, constant
fields as predicted by Mukohyama model [56]. In the post-inflationary scenario, PMFs
with smaller coherence scales (limited by Hubble horizon scale), could be generated dur-
ing phase transitions through e.g., collision and nucleation of bubbles of different phases
if the phase transitions are of the first order. This can be translated onto realisation of
the seed magnetic field having a sharply peaked magnetic power spectrum where the
peak, or the characteristic length-scale is set by the phase transition bubble size; see, e.g.,
Ref. [57]. Both generation scenarios, inflationary and phase-transitional, could generate
helical PMFs [58]. Magnetic helicity, being a measure of twist and linkage of magnetic
field lines, has proven to be a helpful tool for understanding the field evolution in the
turbulence-dominated flow (see below). The relevance of a primordial, helical magnetic
field is that, if ever detected, it will be a direct indication of parity (mirror symmetry)
violation in the early universe and can in turn explain the matter-antimatter asymme-
try [59, 60].

The extensive presence of magnetic fields in high redshift galaxies [61] and galaxy
clusters [62] as well as an intriguing possibility of having very weak magnetic fields in
cosmic voids [7] tip the scale in favour of a primordial magnetogenesis scenario. We
notice that e.g., inflationary PMFs have volume filling fraction close to unity, i.e., perme-
ating the whole observable Universe, and can naturally explain the large coherence scales
of extragalactic fields, as well as the presence of magnetic fields (if detected) in the voids
of the Universe.

Apart from the generation physics, PMF studies also focus on the evolution and sig-
natures of these fields. The signatures of PMFs include their effects on Big Bang Nucle-
osynthesis (BBN); in particular, the presence of stochastic PMFs during BBN can poten-
tially reduce the 7Li abundance, providing a better agreement with observations; see e.g.,
Ref. [63]). In addition, the scalar-vector-tensor decomposition of the energy-momentum
tensor of PMFs (in Fourier space) is a powerful approach for analysing the effect of PMFs
on cosmological perturbations, and therewith, on CMBR (see e.g., Refs. [64–66]). For
example, it has been shown that PMF-induced perturbations can be dominant on small
angular scales (see e.g., Ref. [67] and references therein). Furthermore, PMFs drive com-
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pressional and rotational perturbations affect the matter power spectra on small scales,
corresponding to dwarf galaxy scales (see Refs. [68–70] for seminal work; and [71–73]
and [74] for recent studies). Interestingly, recently PMFs were also considered as a po-
tential possibility to relax the Hubble tension [75].

The evolution of PMFs have been studied in the radiation-dominated and post-recombination
epochs. In the pre-recombination epoch, transition of the Universe from inflation to re-
heating phase leads to the production of charged particles. A subsequent increase in
plasma conductivity makes magnetic fields coupled to the primordial plasma. If PMFs
are dynamically strong enough they can lead to development of turbulent motions. If they
are weak the presence of MHD primordial turbulence is still well justified by the phase
transition dynamics. Therefore, one can study the pre-recombination evolution of PMFs
in the MHD turbulence regime.

Studies using MHD-only simulations (i.e., without gravity and cosmology) have ex-
plored characteristics of PMFs in the radiation domination (see e.g., [22,57,76]) or across
the recombination epochs [77] in a “freely decaying turbulence” regime. The MHD evo-
lution of both inflationary (large-scale-) and phase-transitional (small-scale-correlated)
fields show a decay along with an efficient increase of magnetic coherence scales in the
phase-transitional cases. For instance, the typical strength and correlation length obtained
for the phase-transitional fields at the recombination epoch are of the order of 10−6 nG–
0.3 nG and 10−3–30 kpc, respectively [24]. Particularly noteworthy is the largest coher-
ence scales that are obtained for the helical PMFs.

The PMF is expected to freeze and retain its characteristic spectral profile from the
moment of recombination until reionisation. The formation of massive structures, such
as galaxy clusters, and subsequent amplification of PMFs on the corresponding scales
(see e.g., [78]) is studied with cosmological MHD simulations. Even though achiev-
ing a large dynamical range in such simulations still remains a challenge, sufficiently
high (high enough to reach the non-linear growth of magnetic fields) resolution has been
achieved in some large cosmological suites. Notable examples are the MAGNETICUM
project (www.magneticum.org), the Illustris TNG [79] and Chronos++ suite presented in
Ref [53]. Several other simulations have also been successful to reproduce the observed
magnetisation (∼ µG) of the Universe on large cosmological scales (∼ Mpc), such as
e.g., on galaxy cluster scales (see e.g., [45, 46, 80]). However, building a self-consistent
picture of the evolution of PMFs from the very early Universe until the current epoch is
far from trivial. The difficulty lies not only in the modeling of the vast range of astro-
physical scales across different cosmological epochs but also in obtaining realistic initial
conditions. The initial velocities and densities used in cosmological simulations often ne-
glect any effects from PMFs (i.e., the effects on the initial matter power spectrum) as well
as MHD decay effects (coming from the evolution of PMFs in the radiation-dominated
epoch). Nonetheless, cosmological MHD simulations still remain our main guiding tool
for interpreting the existing observations of cosmic structures, for exploring the origin of
cosmic magnetic fields and constraining primordial magnetogenesis scenarios.

In this thesis, we use cosmological MHD simulations and study PMF evolution during
structure formation. We hope our work is a step further in understanding the physics of
PMFs and in employing more realistic MHD cosmological simulations in order to search
for the primordial magnetism imprints. In the following sections, we overview the ob-
served large-scale magnetisation of the Universe in a bit more detail while in Section 1.3
we present the structure and aim of the thesis.
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1.2 Large-scale magnetisation of the Universe
The forthcoming large surveys, such as the ones with the SKA and its precursors and
pathfinders [81–83], and the CTA, in tandem with the Fermi Gamma-ray space telescope
will play a crucial role in answering the key questions about cosmic magnetism. The
observed large-scale magnetisation of the Universe is the primary motivation for study-
ing the PMFs. Below we discuss some of the observational techniques that are used for
inferring the magnetic field strength on galaxy cluster scales and in the rarefied cosmic
regions. We focus on synchrotron emission and Faraday rotation as probes of cluster and
intercluster magnetic fields, and blazar spectra observations as probes of the magnetisa-
tion of rarefied cosmic regions (such as cosmic voids and the IGM).

1.2.1 Galaxy clusters and filamentary structure?
Galaxy clusters, the largest gravitationally bound structures of the Universe with a to-
tal (baryonic and dark matter, DM) mass of ∼ 1014M⊙ – 1015M⊙, reveal the existence of
large-scale magnetic fields in the dilute plasma between galaxies known as the intracluster
medium (ICM). The most of the baryonic mass of galaxy cluster is contained in the ICM
which is mainly composed of ionised hydrogen with ∼ 10−3 cm−3 electron number den-
sities at 107—108K temperature. We observe ICM through X-ray and radio emission. At
the ICM temperatures, the primary emission for a gas is the thermal bremsstrahlung which
results from free-free electron-ion collisions and it is detected at X-ray wavelengths. The
morphology of X-ray emission along with other parameters of the cluster can be used to
identify the dynamical state of galaxy clusters (see e.g., Ref. [84]); i.e., whether it is a
relaxed cluster or it is undergoing a merger with another cluster (so-called merging clus-
ters). The radio emission, on the other hand, results from relativistic electrons gyrating
along magnetic field lines producing synchrotron emission. This is an extended, diffuse
emission which is not directly associated to any source (i.e., galaxy) in galaxy clusters
and it rather traces the ICM magnetic fields and relativistic electrons.

Radio sources are now being detected in nearby as well as distant galaxy clusters
thanks to the advancements of radio telescopes. These sources are divided into radio
halos and radio relics (see Ref. [85] for a recent review) where the former is usually
found in the centre of merging clusters (200-1500 kpc in sizes), following approximately
the X-ray emission, while the latter is a ∼ Mpc-sized source with elongated structures
located in the cluster periphery; see Figure 1.1 for such an example. In dynamically re-
laxed clusters one also finds smaller-size (100 kpc) radio sources called radio mini-halos.
Interestingly, the recent LOw Frequency ARray (LOFAR; observations at frequencies of
< 200 MHz) observations have detected clusters whose radio halos are embedded in a
much more extended diffuse radio emission, referred to as “megahalos”. The intensity
of the megahalos is lower compared to the radio halos but they point to the existence of
magnetic fields (along with relativistic electrons) far beyond the regions of radio halos.
This makes them interesting objects for unveiling the nature of relativistic electrons and
magnetic fields in the outskirts of galaxy clusters. More importantly, radio emission has
also been detected on scales larger than galaxy clusters [1, 2, 36, 37], i.e., extending over
filamentary scales. Such regions are now referred to as “radio bridges” (similarly to the
so-called bridge, a term which has been applied to the detected intercluster matter between
galaxy clusters [86] and that has motivated a search of this diffuse radio emission between
galaxy clusters, i.e., the radio bridge). In Figure 1.2 we show the radio (blue) and X-ray
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Figure 1.1: Composite radio (LOFAR 120168 MHz, red) + X-ray (X-ray telescope
ROSAT, 0.12.4 keV, blue) image of the Ant Cluster showing radio halo and radio relic.
Figure credit: Ref. [1].

(red) emission (LOFAR observations) in a galaxy cluster pair of Abell 399 and Abell 401
from Ref. [2]. As the figure shows, the space connecting these two merging clusters is
permeated by magnetic fields traced by synchrotron emission. Furthermore, Ref. [62] has
recently claimed the detection of radio halos in high redshift (z ∼ 0.6–0.9) galaxy clusters
which requires the fast and efficient amplification of seed magnetic fields within the few
Gyr timescale during cluster formation (regardless of magnetogenesis scenario).

Even though detected synchrotron emission gives us evidence for the existence of the
ICM magnetic fields, it does not allow an unambiguous determination of the field strength.
One usually has to make an assumption, such as e.g., the minimisation of the total energy
of the source in order to estimate the volume averaged magnetic field strength. The total
energy of the source ϵT , is the sum of magnetic field energy (ϵB) and the relativistic
particles’ (electrons and protons, ϵe, ϵp) energy: ϵT = ϵB + ϵe + ϵp. It can be shown that
ϵT is a function of synchrotron luminosity and magnetic field strength (along with other
parameters; see e.g., Section 3 in Ref. [87]). Then one assumes equipartition between
particle and magnetic energies since this approximately happens for the magnetic field
value where the total energy has a minimum (see e.g., Figure 2 in Ref [87]). The magnetic
field value determined with this method is referred to as equipartition valueBeq = 24πϵmin

where ϵmin is the minimum energy density and it can be expressed in terms of observable
quantities, such as e.g., source brightness at certain frequency. This method has been
used to estimate magnetic field strengths in galaxy clusters (see e.g., [88, 89], see also
Table 3 in Ref. [87]). Moreover, Beq has also been estimated for the intercluster medium
in the recent work [16]. The authors used a nondetection of radio ridge between colliding
galaxy clusters (Abell 3391, Abell 3395) to put an upper bound of the order of 0.1µG on
the magnetic field strength. Another recent work [17] has used equipartition argument for
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Figure 1.2: The X-ray and radio (LOFAR observations) emission detected from Abell
0399 and Abell 0401 are shown in red and blue colors, respectively. Sources not related
to radio bridge are shown in grey. See the text and Ref. [2] for more details. Figure credit:
Ref. [2].

deriving the field strength (to be of the order of 30—60 nG) in cosmic web filaments; in
this case, authors used a novel technique of stacking the multiple radio and X-ray maps
of physically close luminous red galaxies to search for the synchrotron emission from the
filamentary structure.

Another probe of the EGMF is the Faraday rotation effect. Faraday rotation of lin-
early polarised emission helps us understand magnetic fields on a vast range of astrophys-
ical scales. Polarised radio emission from distant sources is affected by an intervening
magnetised plasma which rotates the intrinsic polarisation plane of emission. This hap-
pens due to the different phase velocities that are gained by the left and right-circular
polarisation states of a wave when traversing the foreground magnetised region.

In order to understand why the Faraday rotation effect takes place, following the

Ref. [90], we first consider the magnetised plasma with characteristic wp =
√

4πnee2

me
fre-

quency,2 where ne, e andme are the electron number density, electron charge and electron
mass, respectively. Another characteristic frequency of such medium is the electron gy-
ration frequency: we =

eB
mec

with B being the magnetic field strength. Next, we consider
the propagation of a linearly polarised electromagnetic wave (such as the synchrotron ra-
diation) in the magnetised plasma. We assume that the electric field vector El oscillation
frequency is much larger than the mentioned characteristic frequencies of the plasma, i.e.,
ω >> we, wp, We also note that a linearly polarised wave is the superposition of a right
and a left circularly polarised modes (with the same frequency); that is El = ER + EL,
where El and ER are the right (R) and left (L) circularly polarised modes, respectively.
They rotate in opposite senses, symmetrically with respect to the polarisation orientation.

2This is a frequency that is caused by the Coulomb force which acts as a restoring
force on the electrons (e.g., when they undergo small displacements in the ion-electron
gas).
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Finally, we discuss the case when the wavevector k (k = |k|) of the emission matches
the magnetic field direction, k||B. In such case, the dispersion relation (derived from the
Maxwell equations; see e.g., Ref. [90] and its Appendix A) takes the form:

ω2 = c2k2 + ω2
e ±

w2
pωe

ω
.3 (1.1)

In the latter equation ± sign corresponds to the R and L circularly polarised modes, re-
spectively. One can rewrite this relation in terms of the phase velocity:

VΘ ≡ w

k
= c

(
1 +

ω2
p

2ω2
±
w2

pωe

2ω2

)
, (1.2)

where we see that, indeed, the R and L modes have different phase velocities (VΘ,R >
VΘ,L). In the calculations below, we adopt the definition of the phase of a wave as

Θ = ωt−
∫ l

0

kdl′, (1.3)

noticing that at the source (l = 0) there is no difference between the phases of the L and
R modes. The difference in the phase of L and R modes arises during the propagation of
a wave in the magnetised plasma (see the nice illustration, Figure 2 in Ref. [90]). Then
we expect the following difference in the phases of the L and R modes [90]:

∆Θ = ΘR −ΘL = −
∫ l

0

∆kdl′ =

∫ l

0

∆VΘ
VΘ

kdl′ =

∫ l

0

w2
pwe

w3
kdl′. (1.4)

One can also show that the angle by which the wave polarisation plane is rotated during
its propagation in the magnetised medium is half of the phase difference between the L
and R modes:

∆ψλ =
1

2
∆Θ =

1

2

∫ l

0

w2
pwe

w3
kdl′ =

(
e3

2πme2c4

∫ l

0

neBdl
′
)
λ2. (1.5)

The latter equation can also be written in terms of the rotation measure (RM):

∆ψλ ≡ ψλ − ψ0 = RMλ2, (1.6)

where

RM =
e3

2πm2
ec

4

∫ observer

source
neBldl, (1.7)

and ψλ and ψ0 are the polarisation plane angles at the observer location and at the source,
respectively. The subscript l in Bl indicates that magnetic field is directed toward the ob-
server. By convention, a positive (negative) RM implies a magnetic field pointing toward
(away from) the observer. For a source at cosmological distance and redshift z, RM is
modified to

RM =
e3

2πm2
ec

4

∫ l

0

(1 + z)−2ne(z)Bl(z)dl(z)

= 0.812

∫ l

0

(1 + z)−2

(
ne

cm−3

)(
Bl

µG

)(
dl

pc

)
rad
m2

,

(1.8)

3Note that here the electrons’ thermal motion is not taken into account; i.e., the plasma
is assumed to be “cold”.
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Figure 1.3: The morphology of ψ2
peak,res (frequently referred also to as RM) in Fornax

galaxy cluster as revealed by Australian Square Kilometre Array Pathfinder (ASKAP)
observations. Light blue and pink contours show X-ray emission as seen by Chandra in
0.3–1.5 keV bandpass [3] and ROSAT 0.1–2.4 keV bandpass [4], respectively. The white
dotted lines shows a virial radius of Fornax cluster (705 kpc); the white dashed lines show
the region outside X-ray emitting ICM where the enhancement of ψ2

peak,res values has been
found (see Ref [5] for more details). Figure credit: Ref. [5].

where (1 + z)−2 factor accounts for the dilution of the electromagnetic waves due to
expansion of the Universe (see Section 2.2).

As we can see from the definition, measurements of RM can provide information
on the LOS magnetic field strength, weighted by electron number density. Although,
it should be noted that, in general, Equation (1.8) defines the Faraday depth ψ(L′) (see
below) where L′ is a location of a source. Faraday depth [91, 92] coincides the definition
of RM in the ideal case when the rotation is caused by only one, non-emitting Faraday
screen.

Various methods exploiting the Faraday rotation effect have been used to understand
the strength and structure of the magnetic field in the ICM. A traditional way has been to
estimate RM as a slope from a linearly-fitted ψλ(λ2) relation where ψ has been measured
for different wavelengths, λ. See e.g., Refs. [18, 93] where this method has been used
to constrain the Coma cluster and the Coma relic magnetic field strengths (derived to be
∼ 5.4µG and 2µG, respectively).

The wide-band data which is becoming available through SKA precursors/pathfinders
makes it possible to use other methods for tracing the properties of large-scale magnetic
fields. For instance, Faraday tomography, offering a tomographic reconstruction of mag-
netised structures along the LOS [94], seems to become a powerful tool in near future.
This method uses the Rotation Measure Synthesis (RMS) technique to calculate the Fara-
day depth [91, 92]. The results from the RMS technique have been presented in several
recent works (see e.g., [5, 20]). Figure 1.3 shows the results from Ref. [5] mapping the
ψ2

peak for the low mass (∼ 6× 1014M⊙) Fornax galaxy cluster (contribution from Galactic
magnetic field has been subtracted; see below). The Faraday depth is obtained through:
ψ2

peak = argmax(|F(ψ)|) where the function F(ψ) is determined from the Faraday disper-
sion spectrum, P(λ2). Here, P(λ2) =

∫
F(ψ)e2iψλ

2
dψ (see Ref. [5] for more details on

the technique). Figure 1.3 illustrates that magnetised medium extends beyond the X-ray
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emitting ICM, thus, again, showing that magnetic fields are present outside dense envi-
ronments, specifically, in moderately-dense components of the Warm-Hot Intergalactic
Medium (WHIM; plasma with T ∼ 105–107K, and ne ∼ 10−6–10−4 cm−3, and that is
thought to be formed during structure formation).

Finally, we note that all magnetised regions along the LOS contribute to the Faraday
rotation effect. Here, for simplicity we refer to RM which is conveniently decomposed
into components [95]:

RM = RMsource +RMGal +RMIGM, (1.9)

where RMsource,RMGal and RMIGM are the contributions from the magnetised medium
of the source itself, of our own Galaxy and the IGM, respectively. In Section 6.6 we
will also describe a novel approach that has been used recently to isolate the contribution
from the IGM. RM observations of extragalactic radio sources are fundamental in fur-
ther constraining the properties of large-scale magnetic fields in the near future and for
discriminating between (primordial) magnetogenesis scenarios.

1.2.2 Rarefied cosmic regions
Observations of high-energy gamma rays from blazars provide an intriguing possibility
of detecting very weak magnetic fields in the IGM of voids. Although these observations
have not yet led to the measurements of void magnetic fields, they have been used to
put a lower limit on the field strength. Blazar spectra observations are most promising for
measuring the magnetisation of cosmic voids since this technique is immune to the effects
coming from the source (i.e., blazar) or Galactic magnetic fields which are otherwise
difficult to exclude from the RM measurements. Below, we briefly describe the technique
underlying the use of blazars as a probe of cosmic magnetism (see pioneering work of
Ref. [96]) and its uncertainties while we refer the reader to more detailed reviews on the
question (e.g., Refs. [6, 9, 23]).
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Figure 1.4: Left panel: Propagation of high-energy γ-rays (emitted from blazars) that
show channelling of TeV emission into GeV cascade emission due to interactions with
the EBL and CMB photons. The GeV emission affected by intervening magnetic fields is
broadened out of the telescope’s point spread function. The sketch adapted from Ref. [6].
Right panel: Simulated blazar spectra as they are obtained for different magnetic field
strengths in IGM. The amplitude of the magnetic field affects the low-end tail (< 1012 eV)
of γ-ray spectra. The data points represent measurements by Fermi-LAT [7] and H.E.S.S.
[8]. The figure credit: Ref. [9].

In the left panel of Figure 1.4, we show a sketch illustrating the process associated
with the propagation of high energy γ-rays. TeV γ-rays, emitted from blazars, interact
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with the extragalactic background light (EBL) producing electron-positron pairs (γγ →
e+ + e−). The pair energy is then channelled into the cascade, GeV emission through
inverse-Compton scattering of e+, e− with the Cosmic Microwave Background (CMB)
photons. The secondary GeV emission propagates along with the primary TeV emission
and γ-ray spectrum is expected to have a bump (excess) in the GeV regime. If magnetic
fields reside on the largest scales (∼ 100Mpc) of the Universe, they can alter the process
by bending the trajectories of the pair and broadening the secondary GeV emission out
of the telescope’s point spread function. The secondary cascades are often referred to as
haloes [97] because of their expected halo-alike morphology in the axi-symmetric case;
i.e., when the angle between the observer and blazar jet axis is ∼ 0 (see also Ref. [9]).
The cascade emission might also be not detectable if the signal is delayed with respect
to the primary γ-ray propagation time. This again depends on the strength of the IGM
magnetic field, and on the distance to the source and duration of emission [98–100].

In the right panel of Figure 1.4, we show the simulated blazar spectra (simulated using
the Monte-Carlo simulations; see Ref. [9]) for different magnetic field strengths. As we
can see zero magnetic field case, B = 0, shows an excess with respect to the B > 0
cases. The non-observation of this GeV bump in the blazar spectra (the data points in the
figure) along with the modelling of the cascade emission has been used to impose lower
bounds on the intergalactic magnetic field strength. The first such analysis has been done
in Ref. [101] where authors derived a lower limit on the IGM magnetic field strength to
be ≳ 3 × 10−16G on Mpc scales assuming broadening of the cascade emission around
the initial point source. The constraints on the magnetic field strength, derived from
such analysis, in general, depend on the structure of the field (see e.g., Figure 4.2; see
also Section 8.1); thus, this method can help us to test magnetogenesis scenarios. For
instance, Ref. [102] has studied the propagation of cascade emission to put constraints
on the volume filling factors of large-scale magnetic fields. The authors argue that either
magnetic fields have been generated from primordial magnetogenesis scenarios or should
have been (very) efficiently transported toward large cosmological scales if they were
generated by local processes in the late Universe. Even though the TeV blazar spectra
measurements still remain the strongest argument for the proposed relic magnetisation
of the Universe it is still unknown whether the void magnetic fields could be effectively
polluted by e.g., galactic winds. The recent modelling of the blazar spectra in combination
with galactic outflows has shown that the effect of the observed GeV flux suppression
should be coming due to magnetic fields residing in cosmic voids [103].

The picture described above may change and production of GeV gamma rays might be
inhibited if the pair beam is subject to plasma instabilities [104,105]; e.g., if the electron-
positron pair loses the energy via interactions with the ionised component of the IGM
rather than through the inverse Compton scattering of the CMB photons. Various mech-
anisms of instabilities have been proposed in the literature (see e.g., [106–108]). Even
though the effect of plasma instabilities is still under debate the recent work [109, 110]
has shown that the weak, small-scale-correlated (≲ kpc) magnetic field can reduce the
electrostatic instability growth rate and eliminate the suppression of the secondary cas-
cades. If the GeV halo is detected using the future telescopes, such as e.g., the CTA, this
will settle the issue confirming that plasma instabilities do not play a role and suppression
of secondary cascades is due to large-scale magnetic fields existing in cosmic voids. It
should also be mentioned that detection of the GeV halo can give us a hint on the pri-
mordial magnetic helicity since helical magnetic fields lead to the unique morphological
signatures in the γ-ray-induced electromagnetic cascades [9, 111, 112]. We will briefly
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Figure 1.5: Projected density of the simulated volume relevant for the cosmic web study
(left panel; [10]) and galaxy cluster study (middle and right panels; [11]). Left panel
shows simulated (80 h−1cMpc)3 volume with 19.5 h−1ckpc resolution; middle and right
panels show the simulated cluster with 2.44 h−1ckpc resolution within (20 h−1cMpc)3

and (5 h−1cMpc)3 boxes, respectively. From left to right the zoom-ins of the selected
regions are shown. We note that throughout this document we use the ‘c’ to emphasise
comoving units, i.e., comoving with the expansion of the Universe. See Chapter 2 for
more details.

discuss this in Section 8.1.

1.3 Aim and structure of the thesis
In our work, we assume that PMFs are good candidates for explaining the magnetisation
of large-scale cosmic structures. This thesis is an attempt, for the first time, to combine our
current understanding of the PMF generation scenarios and pre-recombination evolution
of PMFs to study their evolution during structure formation. Our thesis aims to answer the
following questions: (1) is the PMF structure relevant when studying their amplification
during the formation of the cosmic web? (2) Are the PMF imprints erased after the non-
linear structure formation? (3) What is the initial structure of the PMF which leads to
the observed magnetic field strengths and coherence scales in galaxy clusters and cosmic
voids?

We study the PMFs that originate during inflation and phase-transition epochs. We
model the evolution of these fields during structure formation while taking into account
their end-of-recombination spectral characteristics (i.e., taking into account their MHD
decay effects in the early Universe). We employ cosmological MHD code Enzo [113]
to simulate their amplification/decay in the (i) cosmic web and in (ii) galaxy clusters. In
the former project, we also study helical PMFs. As mentioned earlier, study of the helical
PMFs can be helpful in constraining the early Universe physics.

In both of our projects, we group PMF models according to their characteristics. We
study PMFs that have large and small coherence scales at the start of our simulations, cor-
responding to the inflation- and phase-transition magnetogenesis scenarios, respectively.
In Figure 1.5 we show cosmological volume relevant to our cosmic web and galaxy-
cluster studies. In the cosmic web simulations, we study global distribution and proper-
ties of PMFs through large-scale structure formation. In the galaxy cluster simulations,
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even though they also account for the evolution of the larger-scale cosmic environment,
we focus on analysing the “shorter” length scales that cover galaxy clusters and the ICM.

In this thesis, apart from presenting our results from the mentioned works, we will
also briefly review the theoretical framework relevant to the PMF studies. We start this
in Chapter 2 by giving a short overview of the (ΛCDM) cosmology that is employed in
our projects. In Chapter 3, we write down the MHD equations essential for understanding
the basic principles of the evolution of (primordial) magnetic fields. In the same chapter,
we also give a description of the characteristic scales of PMFs and their amplification
mechanisms. In Chapters 4 and 5 we overview the generation and pre-recombination
evolution of PMFs, and adopted methods for studying their evolution during structure
formation, respectively. In Chapters 6 and 7 we present our results which are based on
the following papers:

• Mtchedlidze, S., Domı́nguez-Fernández, P., Du, X., Brandenburg, A., Kahniashvili,
T., O’Sullivan, S., Schmidt, W., Brüggen, M., “Evolution of Primordial Magnetic
Fields during Large-scale Structure Formation”, ApJ 929, 127 (2022),

• Mtchedlidze, S., Domı́nguez-Fernández, P., Du, X., Schmidt, W., Brandenburg,
A., Niemeyer, J., Kahniashvili, T., “Inflationary and phase-transitional primordial
magnetic fields in galaxy clusters”, ApJ 944, 100 (2023)

where we studied the evolution of PMFs in the cosmic web and in galaxy clusters, corre-
spondingly. In these chapters, we also include a more detailed description of the setup of
our simulations, physical model, as well as the key findings of the project in summaries.
Finally, in Chapter 8 we will discuss future prospects that have been raised by the studies
presented in this thesis.

In this document, we mostly use natural units (c = kB = 1; i.e., except Chapters 6,
7), Minkowski metric sign convention (+, –, –, –) in Chapter 2 and (-, +, +, +) convention
in Chapter 3. In Chapter 3 we distinguish between the rescaled (comoving) and physi-
cal variables; for instance, for the rescaled and physical magnetic field we use B∗ and
B notations, respectively. From Chapter 5 we use only comoving values of the fields
(i.e., B becomes comoving value in the mentioned chapters and stars no longer indicate
rescaled values) unless stated otherwise. We also use ‘c’ to emphasise comoving units
(e.g., h−1ckpc denotes comoving (kpc) length scale).
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Chapter 2

Standard model of Cosmology

Λ-Cold Dark Matter1 (ΛCDM) cosmology or Concordance Model, is the framework in
which we study the evolution of PMFs. This model successfully describes the formation
and evolution of large-scale structure. Over the past decades, Cosmology has become
a data-driven precision science and the ΛCDM model has been tested against various
observations. Even though the model has some tensions and unexplained phenomena,
concordance cosmology with its standard model of particle physics (describing and clas-
sifying all known elementary particles) gives a good agreement between theory and ob-
servations. According to this model, tiny density perturbations that are imprinted on
CMBR lead to the formation of the cosmic web; the “known” constituents of our acceler-
ated expanding (dark-energy dominated) Universe are the baryonic and dark matter that
causes the observed clustering of matter through gravitational attraction. In this chapter,
we give a brief overview of the mathematical framework of ΛCDM cosmology and tell
a short story of the evolution of the Universe that is based on the mentioned paradigm
(or more precisely, on the extension of ΛCDM paradigm which is sometimes referred to
as inflationary-ΛCDM). We mostly follow classic textbooks [114–116] on the subject, as
well as the lecture notes by Jens Niemeyer.

1Λ is standing for the cosmological constant, associated to dark energy and which is
thought to cause the accelerated expansion of our Universe. Cold DM is hypothesised to
be consisting of weakly interacting massive particles. Cosmologists strive to understand
the nature of these components.
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2.1 Homogeneous and isotropic Universe
One of the main assumptions of Cosmology, firmly established by observations (and often
referred to as Cosmological Principle), is the homogeneity and isotropy of the Universe.
According to this principle, there is no preferred scale and direction for the matter dis-
tribution on large cosmological scales (at least scales ≳ 1000Mpc). Another important
concept is the expansion of the Universe. Even though it had already been predicted
by General Relativity, it was largely accepted only after Edwin Hubble’s observations of
galaxies and their redshifts [117]. These observations showed that physical separation
between gravitationally unbounded systems grows in time.

The homogeneity and isotropy of an expanding Universe implies the corresponding
4-dimensional space-time line-element, describing the geometry of our Universe, to have
the form:

ds2 = gµνdx
µdxν = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(2.1)

where gµν is the metric tensor and dxi is the 4-dimensional line element; a(t) is the scale
factor, carrying the dimension of length, dΩ2 = dθ2 + sin2θdϕ2, and k determines the
spatial curvature of the Universe with k = 0, k > 0 and k < 0 corresponding to the flat
(bounded), closed (unbounded) and open (unbounded) Universes, respectively.

The metric expressed with Equation (2.1) is called the Friedmann-Lemaitrie-Robertson-
Walker (FLRW) metric [118–121]). It is often written in terms of a conformal time, de-
fined as:

τ =

∫
dt

a(t)
, (2.2)

and in terms of a comoving coordinate χ which replaces the radial coordinate r with the
following relation:

dχ2 =
dr2

1− kr2
. (2.3)

Note that the comoving distance χ = arcsinhr if k = −1, χ = arcsinr if k = +1, and
χ = r for k = 0. Using Equations (2.1)–(2.3), FLRW metric will take the form:

ds2 = a2(τ)(dτ 2 − dχ2 −Ψ(χ)(dθ2 + sin2θdφ2)), (2.4)

where

Ψ2(χ) = r =


sinh2(χ), k = −1;

χ2, k = 0;

sin2(χ), k = +1.

(2.5)

It should also be noted that for k = 0 metric (Equation (2.4)) is conformally Minkowski;
that is, there exists a transformation for the metric in the form: gFLRWµν = f 2gMin

µν , where
f is a function of spatial coordinates xα and gMin

µν is the Minkowski metric.2

The comoving spatial coordinate defined in Equation (2.3), (i.e., defined in the La-
grangian coordinate system which is comoving with the expanding hypersurfaces), is

2In general, transformations in the form: g′µν = f 2gµν are called conformal trans-
formations; such transformations keep the metric signature, sign of the four-vectors and
angles between them unchanged.
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related with the physical spatial coordinates R (Eulerian, fixed coordinate frame) by the
following relation:

R = a(t)χ, (2.6)

Taking a time derivative of the definition above, we will obtain two components for the
physical velocity V:

V = Ṙ = ȧ(t)χ+ υ, (2.7)

where υ is the peculiar velocity which e.g., can be caused due to local gravitational forces;
the first term on the right hand side represents the receding velocities due to cosmic ex-
pansion and it depends on the time derivative of the scale factor (denoted by dot). An
usual way for normalising the scale factor is to take its value at the present time as
a(t = t0) = a0 ≡ 1; hereafter, we will always use the subscript “0” for the present
day values of different cosmological parameters. The first term in Equation (2.7) repre-
sents the Hubble law: V ∼ H(t)R with H(t) being the Hubble parameter. The present
time value of the Hubble parameter, H0, is often expressed in terms of the dimensionless
Hubble parameter h, H0 = 100h km s−1 Mpc and h = 0.674 ± 0.0005 according to the
recent analysis of the Planck data [122].

2.2 Redshift
A helpful quantity associated to an expansion of the Universe is the cosmological redshift
z. It is defined as the amount by which the wavelength of an emitted photon stretches
when propagating through an expanding space. It is given as:

z =
λobs − λem

λobs
, (2.8)

where λem and λobs are wavelengths of the emitted and observed photons, respectively.
This shift in the wavelength is due to differences between the scale factors at the moment
of light emission and at the moment the observer detects it. Therefore, we can express the
ratio of the wavelengths of the observed and emitted light as:

λobs

λem
=
a(tobs)

a(tem)
(2.9)

leading to:
1 + z =

a0
a
. (2.10)

The redshift can be used as a measure of distance, and as we will see below it helps us in
constraining the cosmological parameters.

2.3 Matter & dynamics
One can assume that cosmic fluid behaves as an ideal gas on large scales. Its stress-energy
tensor Tµν then can be written in the form:

Tµν = (p+ ρ)uµuν + pgµν , (2.11)

with p, ρ, uµ being the pressure, density, and four-velocity of the fluid, respectively. In the
rest frame and in comoving coordinates we have: uµ = (1, 0, 0, 0) and Tµν = diag(ρ,−p,−p,−p).
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The trace of the energy-tensor, given as Tµν = ρ− 3p, is covariantly conserved ∇µT
µν =

0. It should be noted that in its general form, Equation (2.11) must include contributions
from the electromagnetic fields (such as e.g., PMFs); see e.g., Equation (2.4) in Ref. [123]
for such an example. However, here we only focus on the standard cosmology and we
comment on the consequences of the inclusion of PMFs in Equation (2.11) in Chapters 3
and 8.

Conservation of µ = 0 component of Tµν i.e., ∇µT
µ
0 = 0 yields relationship between

the density and scale factor:
ρ̇

ρ
= −3(1 + w)

ȧ

a
, (2.12)

where the constant w is defined through an equation of state p = wρ. The solution of
Equation (2.12):

ρ ∝ a−3(1+w), (2.13)

has an important implications for Cosmology. In particular, we see that dynamics of the
fluid is determined by its equation of state. For example, we see that i) the collisionless,
non-relativistic matter with w = 0 (i.e., pressureless fluid, or “dust”) evolves as ρ ∝ a−3;
ii) the relativistic component (i.e., radiation), with w = 1/3 scales as ρ ∝ a−4; that is,
the energy density for this component decreases faster than that of the non-relativistic
matter; and finally, iii) vacuum energy (or “cosmological constant”) with w = −1 gives
ρ = constant.

In order to see how the scale factor evolves with time we need to turn to the Einstein
equations, relating stress-energy tensor (i.e., distribution of mass-energy) with the space-
time metrics. They are written in the form:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.14)

where the Einstein tensor Gµν is a function of the Ricci tensor Rµν (curvature tensor) and
Ricci scalar R (scalar curvature of the space), and G is the gravitational constant. The
(symmetric) Ricci tensor is constructed from the metric and its first and second derivatives
(through Christoffel symbols), while the Ricci scalar is a trace of Rµν with respect to the
metric. Solving of the Einstein second order differential equations for the FLRW metrics
leads to the so-called Friedmann equations:(

ȧ

a

)2

≡ H2(a) =
8πG

3
ρ− k

a2
, (2.15)

ä

a
= −4πGρ

3
(1 + 3w). (2.16)

As we see from the first Friedhmann equation (Equation (2.15)), the Hubble parameter
depends on the scale factor and its time derivative. In addition, Equation (2.16) shows that
if the Universe is dominated by matter with w < −1/3 we get an accelerated expanding
Universe. By contrast, both w = 1/3, w = 0 cases lead to the decelerated expansion. The
exact solution of the Friedmann equations can be found when assuming the flat (k = 0)
Universe. Then using the solution for the density field (Equation 2.13), we will have:

a ∝ t
2

3(1+w) . (2.17)

This gives the following behaviour: i) a ∝ t2/3 for a matter, ii) a ∝ t1/2 for a radiation,
and iii) a ∝ eH0t for a vacuum dominated Universes.

31



Finally, an useful quantity for Friedmann equations, is the critical density of the Uni-
verse. It is defined through Equation (2.15) when assuming k = 0; that is, we have:

ρcrit =
3H2(z)

8πG
. (2.18)

Using this definition of critical density we can now normalise the density of various cos-
mic fluids

Ωi(z) ≡
ρi(z)

ρcrit
(2.19)

and rewrite the first Friedmann equation as:

Ωtot − 1 =
k

H2a2
. (2.20)

Here, Ωtot =
∑

Ωi denotes the total density parameter with i referring to different mat-
ter/energy components of the Universe. In a similar fashion, we introduce the curvature
parameter: Ωk(z) ≡ −k/H2(z)a2. Then using the Equation (2.19) we can define the
present day matter, radiation, dark energy and curvature parameters, i.e., Ωm,0,Ωr,0,Ωde,0,Ωk,0,
respectively:

Ωm,0 =
8πGρm,0

3H2
0

, Ωr,0 =
8πGρr,0

3H2
0

, Ωde,0 =
8πGρde,0

3H2
0

, Ωk,0 = − k

H2
0a

2
0

. (2.21)

For the density fields, we have relationships:

ρm,0 = ρm

(
a(t)

a0

)3

, ρr,0 = ρr

(
a(t)

a0

)4

, ρde,0 = ρdea
−3(1+w). (2.22)

The latter equations along with Equations (2.10) and (2.20) can be used to write the Hub-
ble parameter in the following manner:

H2(z) = H2
0 [Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωde,0(1 + z)3(1+w) + Ωk,0(1 + z)2]. (2.23)

This latter equation is especially important for testing the current ΛCDM paradigm. It
allows us to obtain cosmological parameters and test cosmological models (see below).

2.3.1 Distances and cosmological parameters
Equation (2.4) takes a simple form when considering the light propagation in an isotropic
Universe with an observer located at the origin. The light propagates on null geodesics3,
that is, ds2 = 0; then taking a radial trajectory with θ, φ = const, we obtain:

dτ 2 − dχ2 = 0, (2.24)

with a solution:
χ(τ) = ±τ + const. (2.25)

3An extremal world line in four dimensional curved space-time on which particle
draws its trajectory [124].
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We can now use Equation (2.25) along with Equation (2.2) to define the comoving dis-
tance for photons travelling along the LOS:

χ =
1

a0

∫ z

0

dz′

H(z′)
. (2.26)

This latter equation is useful for defining the angular diameter distance, DA to an object
at a comoving distance χ:

DA = a(t)Ψ(χ(z)), (2.27)

and the luminosity distance, DL

DL =

√
L

4πF
= a0Ψ(χ(z))(1 + z)2 (2.28)

to an object with an intrinsic luminosity L and the measured bolometric flux (energy per
unit area and per unit time), F . These two distance measures have proven their importance
in measurements of cosmological parameters (note that the knowledge of the cosmolog-
ical parameters leads to identifying the curvature of the Universe; see Equation (2.20)).
Although, one needs to have astronomical objects whose luminosities or angular sizes are
known (so-called standard candles and standard rulers; see e.g., Ref. [125] for the concise
review of different distance measures in Cosmology). In general, finding a reliable stan-
dard rulers and candles turned out to be a hard task. Nonetheless, one important standard
ruler has been extracted from the observations of CMB. The angular power spectrum of
the CMB temperature fluctuations (see Section 2.4) shows peaks (Baryon Acoustic Os-
cillations, BAO) and valleys, where the position of the first peak is sensitive to the total
density parameter at the current epoch Ωtot,0 (and therefore, to the curvature parameter k)
and provides a robust geometrical test of cosmology (see e.g., Refs. [122, 126, 127] for
recent studies). Based on the recent analysis of BAO and the Planck data following joint
constraints are obtained on cosmological parameters [122]:

Ωk,0 = 0.001± 0.002,

Ωm,0 = 0.315± 0.007,

Ωb,0h
2 = 0.0224± 0.0001,

Ωc,0h
2 = 0.120± 0.001,

(2.29)

where Ωb,0 and Ωc,0 are the density parameters of baryonic and cold DM, correspondingly.
Thus, the current observational data favours spatially flat Universe4 with only ∼ 30% of
matter in total, including only ∼ 5% of visible, baryonic matter and ∼ 25% of cold DM.

The rest (∼ 70%) of the energy budget of the Universe is thought be in the form of
dark energy. Elucidating nature of dark energy is one of the challenges of Cosmology.
One possible form of it is the vacuum energy (see [129] for a review on the question) with
an equation of state parameter w = −1. This leads to to the accelerated expansion of the
Universe, as mentioned in Section 2.3. The type Ia Supernovae (SNe; used as standard
candles) measurements indeed showed the accelerated expansion of the Universe (see
[130, 131] for pioneering works and [122] for a recent study) at the current epoch. The
joint analysis of BAO and SNe data is agreement with w = −1.03± 0.002.

4See, however, Ref. [128] which argues that the closed (k > 0) Universe is preferable
by recent releases of different observational data.
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2.4 Short story of the Universe
CMB. Solutions of Einstein’s equations predict growing scale factor regardless of the
matter content of the Universe. This makes us think that our Universe should have been
expanding since its beginning (usually referred to as Big Bang) and should have been
denser and hotter at earlier times. One of the main observational evidence for the exis-
tence of such a state comes from the detection of the CMBR [132]. This faint glow of
light that fills our Universe is residual heat from the recombination epoch, having a nearly
perfect black body spectrum and showing imprints of tiny density fluctuations at the last
scattering surface. Before recombination, particles of this hot bath (consisting of photons,
baryons, electrons, neutrinos, etc.) were continuously scattered. As the Universe was ex-
panding and cooling down particles were decoupling from the plasma. At T ∼ 3650K
temperatures, as the Universe cools down sufficiently, first neutral hydrogens along with
other light elements start to form; this marks the beginning of recombination. After re-
combination, photons propagate freely, i.e., entering the so-called free streaming regime.
It is exactly the moment before the free streaming phase that reaches out to us through
CMBR and that is referred to as the last scattering surface. The observed fluctuations in
the CMBR are quantified through its angular power spectrum (i.e., power spectrum as a
function of angular scale) and give us invaluable information about the early Universe. It
allows us to test cosmological parameters/models, as mentioned already and to explore
extensions of the ΛCDM cosmology. It is also an inarguably powerful tool for studying
the imprints of primordial magnetogenesis (see e.g., Ref. [21]).

Inflation. The so-called hot Big Bang picture, outlined above, has difficulties known
as flattness and horizon problems. As we have seen, the current experimental evidence
is spatially flat (zero-curvature) space-time. However, if we assume k ̸= 0 in Equa-
tion (2.20) we will see that deviation of Ωtot from unity is fine-tuned at early times;
this is because that we would expect always-decelerating Universe (at earlier times) with
ȧin > ȧ0 at origin, t = tin. Thus, we have (see e.g., Ref. [115]):

Ωtot,in − 1 = (Ωtot,0 − 1)

(
ȧ0
ȧin

)2

≤ 10−56. (2.30)

That is, the Universe “becomes” flat with implausibly high order accuracy which clearly
requires justification. Besides, the horizon problem emphasises that in the standard hot
Big Bang scenario, comoving (Hubble) horizon χH = H−1/a = ȧ−1, e.g., at the time of
recombination is much smaller than the observed patch of the Universe (which we “see”
through CMB). Nearly constant temperature of the CMB observed from all directions is
not justifiable if those patches were not causally connected at early times. These prob-
lems are easily evaded by inflationary scenario [133], i.e., if the Universe has undergone
an accelerated phase of expansion before entering the decelerating period. The inflation
should have lasted long enough to make comoving horizon today much smaller than at
the beginning of inflation. Driven by the dynamics of a scalar field (known as the in-
flaton), inflation requires w < −1/3 equation of state. It is widely accepted that this
epoch provides primordial perturbations (exhibiting a nearly scale-invariant spectrum) by
stretching the quantum fluctuations of the metric beyond the horizon. These fluctuations
then serve as seeds for the growth of DM halos and therewith, for structure formation in
the late Universe.

Post-inflationary notable events. After inflation, inflaton decays into standard model
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particles and thermalises. This so-called reheating phase is followed by electroweak (EW)
and quantum chromodynamics (QCD) phase transitions taking place at T ∼ 100GeV
and T ∼ 150MeV temperatures, respectively. The former phase involves the spon-
taneous breaking of electroweak symmetry (electromagnetic and weak forces became
differentiated) and the generation of masses of fundamental particles, such as quarks,
leptons, and gauge bosons through the Higgs mechanism [134,135]. During QCD phase-
transitions, quark-gluon plasma (high-temperature) is transformed into colourless hadrons
(lower temperature; see Ref. [136] for a review). Hot Big Bang proceeds by freezing
out (decoupling) of particles whose collision timescales are shorter than the temperature
change due to the expansion (∝ H−1). At later times (∼ 3 minute after the Big Bang), the
Universe is consisting of relativistic particles (photons, electrons, positrons), decoupled
neutrinos, and non-relativistic particles (baryons, composed of quarks). Baryons then
start to fuse into nuclei via the process of BBN (see e.g., [137]). Finally, it should be
noted, even though the primordial nucleosynthesis and its predictions for the light ele-
ment (H, 3He, 4He, D) abundances are one of the powerful aspects of the standard model,
the model does not explain the excess of baryons to antibaryons (a condition which leads
to baryogenesis; see e.g., [138] for a review).

Post-recombination notable events. After becoming neutral (with a low residual
ionisation fraction) and transparent for photons, the Universe enters the dark ages epoch
(z ≲ 1000–O(10)) when there are no light sources in the Universe. At this time, the
gas temperature still follows the CMBR temperature due to Compton scattering. It is
only at z ∼ 120 (see e.g., Figure 1 in Ref. [139]) when thermally decoupled gas from
the CMBR cools down faster than the CMB photons. This is when (∼ z = 70) the first
(so-called population III) stars form in the DM gravitational potential wells. These DM
halos, having masses up to 105–107M⊙ and being called mini-halos, are thought to have
sufficient H2 abundance in their constituent gas to allow star formation. The peak of star
formation rate is expected to be at z ∼ 30–20 which was followed by the first galaxy
formation (∼ 15–10). The radiation emitted from the first stars should have ionised the
rest of the gas in the IGM, decreasing the neutral hydrogen abundance and heating the
IGM to T ≳ 104K. At this stage, Universe enters the reionisation epoch (z ∼ 15–6). The
end of the reionisation epoch, and in general, the low redshift IGM, is being intensively
probed through high-redshift quasar emission. Quasars are used as background sources
to study the intervening IGM through hydrogen Lyman-α emission.
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Chapter 3

Theoretical framework for PMFs

In the previous chapter, we discussed the FLRW space-time describing a homogeneous
and isotropic Universe and neglected the effects of PMFs. In general, the nearly homoge-
neous and anisotropic magnetic field in the early Universe could cause anisotropic expan-
sion along its direction [140], thus, spoiling the isotropy of FLRW space-time. Isotropic,
stochastic distribution of PMFs might still be incompatible with FLRW symmetries if
such fields are strong enough, so that they have an impact on space-time symmetries. In
that case, as discussed by Ref. [141], cosmological (primordial) electromagnetism should
be studied in the perturbed FLRW framework. Nevertheless, since current observations
(e.g., isotropy of CMB) supports the homogeneous and isotropic Universe, we can think
of PMFs as of weak fields so that they do not generate an anisotropy larger than observed
cosmological anisotropy (see e.g., [142]).

The presence of magnetised cosmic plasma suggests that fluid dynamics should be
described in terms of magnetohydrodynamics. The generalised form of magnetised fluid
equations in FLRW space-time has been derived by several authors [141, 143–145]. An
approach that is employed can vary from author to author. Although, the main principle
lies in the description of cosmic fluid in a general curved space-time and then focusing on
the flat FLRW models. In this chapter, we limit ourselves by describing electromagnetic
fields in their general form; then we write down the Maxwell equations in the flat space-
time. We also note that equations that are employed in our cosmological simulations are
listed in Chapter 5.

In this Chapter, we also introduce magnetic energy spectrum and characteristic scales;
the amplification mechanisms of the magnetic field are also touched upon.
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3.1 Electromagnetic field and its stress-energy tensor
An electromagnetic action in a space-time with a metric determinant g is given by:

SEM =

∫
d4x

√
−g

{
− 1

4
FµνF

µν + JµAν

}
, (3.1)

where
Fµν = Aµ;ν − Aν;µ (3.2)

is the Faraday tensor (also referred to as field strength tensor or Maxwell tensor) and Aµ,
Jµ are the 4-vector potential and 4-current density, correspondingly. We recall that in
Minkowski space Aµ = (−ϕ,A) with ϕ and A being the scalar and vector electromag-
netic potentials respectively; the electric field, E and the magnetic field, B in Minkowski
space are then found from:

B = ∇×A, E = −∇ϕ− ∂A

∂t
. (3.3)

A general form of electric and magnetic fields is obtained from the Faraday tensor. It
should be noted that the matrix form of Fµν for the FLRW space-time differs from its
Minkowski space representation FMin

µν (see e.g., Sec 3.1.1. in Ref. [145] and references
therein). Although, in a first order approximation, Fµν = a2FMin

µν . In order to define
electric and magnetic fields in a general space-time one uses observers who measure elec-
tromagnetic fields from a coordinate system owing the four-velocity uµ = dxµ/ds with
uµuν = −1 (see Section 3 in Ref. [146]).1 One also defines an effective spatial metric
for these observers where the 4-vector electric field Eµ and magnetic field Bµ are defined
through equations:

Eµ = Fµνu
ν , Bµ = F̃ µνuν , (3.4)

with F̃ µν = 1
2
ϵµνλγFλγ and ϵµνλγ being the dual Faraday tensor and the fourth-order Levi-

Civita tensor, respectively. From Equation (3.4) we have Eµuν = 0 and Bµu
ν = 0.

Thus, in the space orthogonal to uµ we have only 3-vectors that characterise electric and
magnetic fields.

Electromagnetic field is characterised by the stress-energy tensor T EM which is ob-
tained from its action, (Equation (3.1)):

T EM
µν = − 2√

−g
δSEM

δgµν
= FµχF

χ
ν − 1

4
gµνFλσF

λσ. (3.5)

This term contributes to the general form of Tµν in Equation 2.14. PMFs, through this
term, could source gravitational waves in the early Universe (i.e., perturbing the space-
time metrics). This, in principle, should be imprinted on CMB anisotropies (see e.g.,
[64, 65, 123]). The stress-energy tensor defined by Equation (3.5) has a vanishing trace:
T ≡ gµνTµν = 0 and in the presence of charges (Jµ ̸= 0 in Equation (3.1)) it is not
covariantly conserved. From the definition of the stress tensor, one can also construct the
energy density, momentum flux, and momentum flux density of an electromagnetic field.

1Note that, as mentioned in Section 1.3, in this chapter we use (-, +, +, +) convention

with the space-time metric defined as: ds2 = −dt2 + a2(t)

[
dr2

1−kr2 + r2dΩ2

]
.
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Finally, it should be mentioned that the electromagnetic action (again, with Jµ ̸= 0) is
invariant under conformal transformation. This implies that electromagnetic wave equa-
tion along with Maxwell equations have the same form in conformally flat FLRW space-
time as in the Minkowski space. Although, as it has been argued in Ref. [141] (see also
Refs. [143, 144, 147]) the electromagnetic field adds anisotropic stress to FLRW space
which is not a conformally flat anymore. Nevertheless, sufficiently weak, background
fields can still be described within the FLRW space as already mentioned in the introduc-
tion of this chapter.

3.2 Maxwell equations
We obtain the Maxwell equations, governing the evolution of electric and magnetic fields
by varying the action (Equation (3.1)) with respect to the metric and vector potential. This
procedure leads to the equation system in the form:

F µν ;µ= Jµ, F̃ µν ;µ=
1

2
ϵµνλγFλγ;µ = 0. (3.6)

These equations can, in general, be written in terms of Eµ, Bµ (Equation 3.4) and without
any pre-assumption of the space-time metric. The details of such a procedure is given, for
example, in Ref. [148].

We now turn to the Maxwell equations that are written for the flat FLRW Universe.
In this case, we can set up a locally inertial frame and define the components of the
magnetic and electric field vectors and of the current density in the form (see Section 3.1
in Ref. [146]): B = (B̄1, B̄2, B̄3), E = (Ē1, Ē2, Ē3), J = (J̄1, J̄2, J̄3); we also define the
charge density ρq. As already noted in Section 3.1, because of the conformal invariance
of the electromagnetic action we can use the appropriate rescaling of the fields [149]:

B∗ = a2B, E∗ = a2E, J∗ = a3J, ρ∗q = a3ρq, (3.7)

which ensures the Maxwell equations in the flat FLRW space-time will have the same
form as that in the Minkowski space-time:

∇r ·B∗ = 0, ∇r × E∗ = −∂B
∗

∂τ

∇r · E∗ = ρ∗q, ∇r ×B∗ = J∗ +
∂E∗

∂τ
;

(3.8)

here ∇r denotes the spatial derivative in the Lagrangian coordinates r which is related to
the physical spatial derivative ∇x with: ∇r = a∇x. We omit the subscript x when using
physical spatial derivatives.

The system of Maxwell equations is complemented by the Ohm’s law:

J∗ = ρ∗qυ + σ∗(E∗ + υ ×B∗), (3.9)

where σ∗ = aσ with σ being the electrical conductivity. By introducing the magnetic
diffusivity as η∗ = 1/σ∗ and using the Equations (3.8) and (3.9), we obtain the induction
equation:

∂B∗

∂τ
= ∇r × [υ ×B∗ − η∗∇r ×B∗]. (3.10)
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This equation describes the evolution of the magnetic field. We see that in the absence of
resistivity (i.e., in the high conductivity limit, σ∗ → ∞) and peculiar velocities (υ = 0),
the rescaled magnetic field remains constant, B∗ ≡ const; that is, in the local inertial
frame, magnetic field decays with the expansion of the Universe: B ∝ 1/a2. It can be
shown that the first term (induction term) in Equation (3.10) ensures that the magnetic
field evolves as 1/a2 even if the peculiar velocities are not zero. This condition is often
referred to as flux freezing and implies that magnetic flux Φ through a comoving surface
S∗, Φ =

∫
S
B∗ · dS∗ is conserved.

We can also discuss an opposite limit in Equation (3.10), i.e., assuming υ = 0 but
η∗ ̸= 0. Then we see the Equation (3.10) reduces to the diffusion equation:

∂B∗

∂τ
= η∗∇2

rB
∗, (3.11)

and the rescaled field B∗ decays on the (comoving) diffusion timescale: τdiff = L2/η∗,
where L defines typical variation scale (comoving) for the magnetic field. Using Equa-
tion (3.11), we can estimate diffusion length scale for the magnetic field. For this, we
again return to physical quantities, so that we have:

Ldiff ∼
√
t

σ
. (3.12)

The value of σ is unknown but we can calculate it using η ∼ 3 · 1013T−3/2 relation for
the physical resistivity η (measured in cm2/ s units; see e.g., Ref. [150]). Assuming
T ∼ 108K for galaxy clusters and t = t0, Equation (3.12) leads to Ldiff ∼ 4 · 1010 cm.
Thus, as we see, magnetic diffusion should be negligible on cosmological scales.

The ratio of the magnetic induction relative to magnetic diffusion defines another
important characteristic of magnetised fluids, namely, the magnetic Reynolds number:

ReM =
υL

η∗
=
υl

η
; (3.13)

here υ is the velocity on a comoving scale L (the proper scale l = aL). The condition
ReM ≫ 1, i.e., when the magnetic induction dominates over magnetic diffusion, is of par-
ticular importance for the dynamo mechanism that can exponentially amplify weak seed
magnetic fields. The onset of the exponential growth of the field depends on the magnetic
Reynolds number. We will discuss this mechanism in a bit more detail in Section 3.8.

In a similar fashion, one defines the fluid Reynolds number

Re =
υl

ν
, (3.14)

with ν being the viscosity of the fluid, and the Prandtl number Pr,

Pr =
ReM
Re

, (3.15)

being the ratio of the magnetic Reynolds number to the fluid Reynolds number. The onset
of the dynamo is also studied in terms of the varying Prandtl number (see e.g., Ref. [151]),
while Re ≫ 1 is a condition for turbulent flows.
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Figure 3.1: Illustration of two interlocked flux tubes. Figure credit: Ref. [12].

3.3 Magnetic helicity
Another conserved quantity in the high conductivity limit of the plasma is magnetic he-
licity. In the next chapter, we will see that magnetic helicity has a unique imprint on
the pre-recombination evolution of PMFs. Furthermore, helicity is related to baryogene-
sis, and thus to matter-antimatter asymmetry, through the Chern-Simons number which is
defined in the electroweak gauge theory (see Refs. [152–154] for pioneering works).

Magnetic helicity measures the linkage, twist, and writhing of magnetic field lines; we
can also think of it as a systematic swirling of the field lines, e.g., toward or away from
the observer. It is defined as a volume (V ∗ = a3V ) integral2 of the dot product of vector
potential and magnetic field (see e.g., [156–159]):

H =

∫
A∗ ·B∗dV ∗, (3.16)

Following Refs. [12, 155], we can see why magnetic helicity is a measure of magnetic
linkage. For example, consider two untwisted, thin and interlocked magnetic flux tubes
(as shown in Figure 3.1) with cross sectional areas dS∗

1 (tube 1) and dS∗
2 (tube 2). We

assume that magnetic fields B∗
1, B∗

2 in both tubes are constants and directed along dS∗
1 and

dS∗
2 vectors, respectively; i.e., the field has no component normal to the surface boundary

(B∗
i · n̂ = 0 where n̂ is the normal of the surface). Let then Φ1 =

∫
B∗

1 · dS∗
1 and

Φ2 =
∫
B∗

2 · dS∗
2 be the magnetic fluxes in the tubes. The magnetic helicity, defined with

Equation (3.16) can then be split into contributions of fluxes from these two flux tubes:∫
A∗ ·B∗dV ∗ =

∫ ∫
A∗

1 ·B∗
1dl

∗
1dS

∗
1 +

∫ ∫
A∗

2 ·B∗
2dl

∗
2dS

∗
2 (3.17)

where the line integrals are taken along B1 and B2 directions. We recall that we chose
these vectors to be constant; therefore, we get:∫

A∗ ·B∗dV ∗ =

∮
A∗

1dl
∗
1

∮
B∗

1dS
∗
1 +

∮
A∗

2dl
∗
2

∮
B∗

2dS
∗
2 = Φ2Φ1 + Φ1Φ2 = 2Φ1Φ2;

(3.18)
here, we used Gauss’s theorem to replace:

∫
A∗

1dl
∗
1 = Φ2,

∫
A∗

2dl
∗
2 = Φ1 with Φ2 and

Φ1 being the magnetic fluxes of tube 2 linked to tube 1 and of tube 1 linked to tube
2, respectively. Generally, the sign of Φ1Φ2 depends on the relative orientation of the

2In general, the requirement for this definition is that there should be a vanishing
magnetic field component normal to the surface of the volume. See Ref. [155] for more
details.
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flux tubes (i.e., on the relative orientation of the magnetic field lines in the flux tubes).
Note that helicity would be zero if the tubes are not interlocked (see Refs. [12, 155] and
references therein). In a similar way, one can also quantitatively characterise helicity as
the measure of the twist and writhe of the magnetic field lines (see examples in Ref. [12]).

The evolution equation of magnetic helicity is derived from the induction equation
and its uncurled version ∂A∗/∂τ = −E∗ −∇rϕ

∗, so one has [155]:

∂

∂τ
(A∗·B∗) = (−E∗−∇rϕ

∗)·B∗+A∗·(−∇r×E∗) = −2E∗·B∗−∇r·(ϕ∗B∗−E∗×A∗);

(3.19)
integrating the latter equation within the volume V ∗, we get:

∂H

∂τ
= −2

∫
V ∗

E∗ ·B∗dV ∗ −
∮
∂V ∗

(ϕ∗B∗ − E∗ ×A∗) · n̂dS∗ = −2η∗C∗, (3.20)

with C∗ =
∫
V ∗ J

∗ ·B∗dV ∗ being the current helicity. In the volume integral, we have used
the Ohm’s law: E∗ = −(υ×B∗) + η∗J∗ where for the first term we have:

∫
V ∗(υ×B∗) ·

B∗ ≡ 0. In addition, in the last equality, we assumed that the surface integral vanishes for
closed domains.

Equation (3.20) shows that in the non-resistive case (η∗ = 0) helicity is a conserved
quantity, ∂H/∂τ = 0; note that this conservation law is independent of fluid velocities
υ. That is, the generation/dissipation of helicity is not affected by any type of fluid flow
(e.g., flow due to turbulent diffusion, ambipolar drift, etc.). However, care has to be taken
in the limit when η∗ → 0 since current helicity can become large. We will see in the
next chapter that it is exactly this property that makes the pre-recombination evolution of
helical PMFs distinguishable from that of non-helical fields.

3.4 Magnetised fluid equations
In Section 3.2 we discussed the dynamics of electromagnetic fields based on the induction
equation and mentioned the high-conductivity regime during which magnetic field decays
with the expansion of the Universe. However, this is a simplified treatment that is appli-
cable only on large length-scales (larger than the characteristic scales of magnetic fields;
see Section 3.6). In general, there are various regimes in the PMF evolution and one
must solve the full set of MHD equations taking into account the dynamics of baryons.
The Euler and continuity equations that account for magnetic fields are obtained from the
conservation law of the total stress-energy tensor Tµν (in this case, Tµν includes electro-
magnetic part of the stress-energy tensor as well). In this case, in addition to the rescaling
of the fields provided in Equation (3.7) we should also define the rescaled baryonic den-
sity, pressure, and shear viscosity µ in the form

p∗ = a4p, ρ∗ = a4ρ, µ∗ = a3µ, (3.21)

respectively. Then for the continuity and Euler equations in the non-relativistic limit (see
e.g., [23, 123, 145, 149, 160] for derivations and more generalised formulation of these
equations) we will correspondingly have:

∂ρ∗

∂τ
+∇ · [(ρ∗ + p∗)υ]− E∗ · J∗ − µ∗∇ · f = 0, (3.22)

41



∂

∂τ
[(ρ∗ + p∗)υ] + (υ · ∇)[(ρ∗ + p∗)υ] + υ∇ · [(ρ∗ + p∗)υ] =

= −∇p∗ + J∗ ×B∗ + µ∗[∇2υ +
1

3
∇(∇ · υ)], (3.23)

where f = ∇(υ2/2) − 2/3υ∇ · υ. These equations along with the induction equation
(Equation (3.10)) are used to study the dynamics of the PMF in the radiation (or across
the recombination) era either in the linear approximation or in non-linear regimes. Below,
we show simple linear solutions while the non-linear pre-recombination evolution of the
PMF is discussed in Chapter 4.

One particular class of solutions which are discussed in the literature in the ideal,
non-viscous limit (see e.g., Ref. [123]):

∂

∂τ
υ + (υ · ∇)υ =

(B∗ · ∇)B∗

4π(ρ∗ + p∗)
, (3.24)

∂B∗

∂τ
+ (υ · ∇)B∗ = (B∗ · ∇)υ, (3.25)

are the stable solutions, in the form [123]:

υ = ± B∗

4π(ρ∗ + p∗)
,

∂υ

∂τ
= 0, ∇ · υ = 0. (3.26)

The exact solutions of Equations 3.26 can be obtained e.g., when magnetic field is decom-
posed into uniform, constant (B∗

0) and stochastic (b∗) components (see also Ref. [123] and
Ref. [146] for a review) and velocity is parallel to the stochastic field. In this case, one
finds solution in the form of Alfvén waves propagating along the uniform component at
the Alfvén speed: vA = b∗/4π(ρ∗ + p∗)1/2. Finally, it should be noted that Ref. [123] has
also studied an approximate diffusive viscous regime to obtain the nonlinear solutions of
Equations (3.10), (3.22) and (3.23).

In the pre-recombination Universe, some of the MHD modes are damped due to radia-
tion viscosity. Around the recombination epoch, modes whose proper lengths are smaller
than the mean free path of photons are entering the free streaming regime. In order to
understand the evolution of such modes, one has to solve the Boltzmann equations for the
photons together with the MHD equations of plasma. Although, Ref. [123] uses a simpler
approach, assuming that in the linear regime the modes which are in the free streaming
regime are affected by isotropic and homogeneous radiation. The resulting Euler equation
then reads [123]:

∂υ

∂t
+H(t)υ + (υ · ∇)υ =

1

aρb
∇pb +

1

ρb
J×B− 1

a
∇ϕg −

4ργ
3ρb

neσTυ, (3.27)

where ρb is fluid pressure, ϕg is the gravitational potential from Poisson’s equation (see
Section 5.1) and the last term describes the frictional drag force on the baryon fluid due to
the radiation energy density ργ . Note that we have written the above equation in the phys-
ical quantities (not in the starred variables) and included the gravitational term because of
the fact that perturbed modes can now become gravitationally unstable. Equation (3.27)
can then be used to discuss the interplay between the baryon and magnetic pressures and
estimate the corresponding damping scale of the magnetic field.
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3.5 Magnetic energy power spectrum
Primordial density fluctuations that are thought of as seeds of all the structures in the Uni-
verse are close to Gaussian distribution. Processes that generate PMFs in the early Uni-
verse are also considered to be stochastic and random. In general, as noticed in Ref. [161]
one might talk about inherent randomness that echoes the idea of quantum uncertainty,
i.e., instead of talking about the precise measurement of, for example, particle position
we will speak about the probability of the particle being at a certain location. Similarly,
one can introduce the concept of random fields which we can think of as a set of functions
each having its probability.

As mentioned in the beginning of this chapter, PMFs are assumed to be the stochas-
tic background in the non-perturbed FLRW space-time and thus, should be described as
stochastic, random fields. In addition, they are assumed to have Gaussian distribution
(Gaussian field is the simplest type of random field). However, as we will discuss in
Chapter 4 PMFs depending on their particular generation mechanism at play might be
characterised by different structure (or topology, as we will often call it). They can be
either statistically homogeneous with a stochastic, isotropic and homogeneous distribu-
tion or uniform fields with a constant amplitude and direction at each point of the space.
Nevertheless, in this section, we give a general treatment for both of these models by for-
mulating magnetic energy power spectrum that we use as one of the analysis tools for our
simulations.

In the statistical framework of random fields, instead of working with probability dis-
tribution functions (PDFs) one usually defines two-point correlation functions. For the
magnetic field, we define its two-point correlation function in the form:

Bij(x,x+ r) ≡ ⟨Bi(x)Bj(x+ r)⟩, (3.28)

where angle brackets denote ensemble averaging, i.e., averaging over many stochastic
realisations of the magnetic field. Equation (3.28) in its most general form, can be written
as [162, 163]:

Bij(r) =MN(r)δij + [ML(r)−MN(r)]r̂ir̂j +MH(r)ϵijlrl, (3.29)

where r̂i = ri/|r| and the normal, MN(r), longitudinal, ML(r), and helical, MH(r),
components of the magnetic correlation function are obtained via the equations

Pij(r̂)Bij(r) = 2MN(r), (3.30)

r̂ir̂jBij(r) =ML(r), (3.31)

ϵijlr̂lBij = 2rMH(r), (3.32)

respectively. In Equation (3.30) Pij, (r̂) = δij − r̂ir̂j is the projection operator onto the
plane normal to r and the trace is given by Bii = δijBij(r) = 2MN(r) + ML(r). In
addition, since the magnetic field is divergence-free we find the relationship between the
normal and longitudinal components to be

MN(r) =ML(r) +
r

2

∂

∂dr
ML(r). (3.33)
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The 3D magnetic power spectrum is the Fourier transform of the real-space correlation
function (see e.g., Appendix A of Ref. [163]):

Fij(k) =

∫
d3reikrBij(r).3 (3.34)

Replacing Bij(r) by Bii(r) = 2MN(r) +ML(r) = 1/r2d(r3ML)/dr ( in Equation (3.34)
leads to:

F3D(k) =

∫
1

r2
d(r3ML)

dr
eikrdr = 2π

∫
d

dr
(r3ML)dr

∫
eikrcosθdcosθ =

= 4π

∫
d

dr
(r3ML)

sin(kr)

kr
dr = 4π

∫
d

dr
(r3ML)[1− k2r2/6 + ...]dr,

(3.35)

where in the last step we used a small-angle approximation in sin(kr) term with respect
to kr. (see also Ref. [164]). It should be noticed that in the infinity if ML decreases faster
than 1/r3 then the first term in the latter equality goes to zero and the overall integral
converges into ∝ k2. Then the 1D power spectrum (see below) ∝ k2F3D(k) ∝ k4. We
will see in Chapter 4 that these results can also be the outcome of the MHD turbulence
in the early Universe. Another outcome of Equation (3.35) is that if the magnetic field
correlator falls off as 1/r3 the integral goes to a constant and 1D spectrum ∝ k2. Both of
these spectra have been discussed in the earlier works [165, 166]. Ref. [166] argued that
divergence free condition of the magnetic field requires ∝ k4 spectrum while Ref. [165]
argued in favour of ∝ k2 spectrum. For more discussion on this topic see also Ref. [29]
and Section 3.5 in Ref. [164].

Finally, in our numerical implementation of the calculation of magnetic energy spec-
trum (analysis in Chapters 6 and 7) we employ one dimensional spectrum which is defined
as: ∫

EB(k)dk =
1

2V

∫
B̂ · B̂

∗
4πk2dk, (3.36)

where B̂ denotes the Fourier transform of the magnetic field, with B̂
∗

being its complex
conjugate, k = |k| is the norm of the wavenumber vector and V is the volume that
normalises the spectrum. We notice that, contrary to the theory, in practice we use volume
averaging based on the ergodic assumption (see e.g., [161,162]); this is due to the fact that
in reality, we have only one realisation of the ensemble (i.e., magnetic field distribution
in simulations, as well as in cosmic structures).

3.6 Characteristic scales
Having defined the magnetic energy power spectrum, we can also define the magnetic
correlation length (often referred to as the coherence or the integral scale) as:

λB =

∫∞
0
dk k−1EB(k, t)∫∞

0
dk EB(k, t)

. (3.37)

3Note that similar to Equation (3.29) one can also define the generalised form
of Fij(k) with its normal, longitudinal, and helical components in the Fourier space
[162, 163].
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From Equation (3.37) we see that the magnetic correlation length is the inverse wavenum-
ber weighted by the magnetic energy power spectrum.

The other two characteristic scales that are also associated to the magnetic spectrum
are: the peak scale, i.e., the inverse wavenumber LEB(k) = 1/kpeak with kpeak being the
wavenumber where the magnetic energy spectra has a peak, and the largest energy con-
taining scale of the magnetic field. The latter is defined as the peak scale of kEB(k), i.e,
the peak scale of the spectral energy per mode [167] and is denoted as LkEB(k).

In order to characterise the variation of the magnetic field, we also define the charac-
teristic wavenumbers [26]

k∥ =

(
⟨|B · ∇B|2⟩

⟨B4⟩

)1/2

, kB×J =

(
⟨|B× J|2⟩

⟨B4⟩

)1/2

(3.38)

corresponding to the magnetic-field variation along (k∥) and across (kB×J) itself.
Finally, we study the geometry of the magnetic field lines in terms of the curvature K

defined as [168]:

K =
(B · ∇)B

|B2|
=

1

B2

[
1

2
∇B2 −B× (∇×B)

]
. (3.39)

In our simulations, we define the curvature scale, λK , as the peak scale of the PDF of the
absolute curvature, K = |K|. This is the typical bending scale of the field lines where the
bulk of the curvature distribution is concentrated at (see Section 7.3.3). We note that our
definition of the curvature scale is different from the definition adopted in Ref. [167].

3.7 Bounds on the field strength
Magnetic field topology and coherence scale are of notable importance when deriving
constraints on the PMF strength. In Section 1.2 we discussed some of the observational
bounds on large-scale magnetic fields that are obtained through Faraday rotation mea-
surements, diffuse radio emission, and blazar spectra observations. More theoretical con-
straints on PMFs come from analysing their effects e.g., on the BBN and CMB; see e.g.,
Refs. [169–171] for reviews.

PMFs might alter predictions of BBN by changing the rates of weak (e.g., β-decay
of neutrons [172–174]) and nuclear reactions [175], or they could also induce anisotropic
expansion, as mentioned earlier. Since the magnetic field increases the overall expansion
rate of the Universe (providing additional energy density) neutrons have less time to de-
cay; as a result, one anticipates increased 4He abundance. Such effects can be used to put
constraints on the PMF strength. For instance, Ref. [176] included the effects from PMFs
on the expansion rate (and in turn, on light element abundances) to derive an upper limit
of the order of 2µG on the scale-invariant PMF, i.e., for the magnetic energy distribution
of PMF that is characterised by the scale-invariant spectrum. Ref. [177], on the other
hand, analysed the effects of PMFs on the BBN reaction chain and obtained 1.5µG upper
limits on the field strength, although with a caution that effects of PMFs on nuclear reac-
tion rates are rather weak (this is in agreement with the results of Ref. [178] who found
that PMF effect on BBN through modified expansion rate is predominant over the effects
arising from the changed reaction rates).

The anisotropic stress from PMFs induces noticeable effects on smaller scales of the
CMB angular power spectrum where the primary fluctuations are suppressed due to Silk
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damping4 (see Ref. [21] and references therein). Limits on the PMF strength derived
from the CMB observations depend on the specific effects that are analysed. The effects
of PMFs on the CMB angular power spectrum suggest a few nG for the upper bound on
the amplitude of stochastic PMFs (∼ 4.4 nG assuming zero helicity and ∼ 5.6 nG for a
maximally helical field at a scale of 1Mpc and with a power-law power spectrum [21]).

We summarise some of the recent constraints or the obtained field strengths from
observations in Figure 3.2. Even though this plot is usually given in B–λB parameter
space, here, instead, we show the scales for which the constraints have been derived
(without specifying it to be the correlation length). The reason for this is that (as it has
also been noticed in Ref. [6]) observations use different definitions for the characteristic
scales of the magnetic field and therefore, any B–λB constraint plot or the plot shown
here gives the qualitative understanding of the limits on the field strength.

3.8 Amplification of the magnetic field
As mentioned in Section 3.1, a high Reynolds number leads to the development of turbu-
lent motions in the fluid. That is, according to the Kolmogorov hydrodynamic turbulence
model [179], turbulent eddies will cascade from large (injection scale, also referred to as
an outer scale) to small scales (the Kolmogorov inner scale) until the viscous-dissipation
scale is reached. Assumption of isotropic, homogeneous, and incompressible turbulence
leads to ∝ k−5/3 spectrum for the kinetic energy.

Turbulence is an important precondition for the dynamo which is a generic amplifica-
tion mechanism applied to the evolution of PMFs in the early and late Universe settings.
There have been different types of dynamos discussed in the literature (see Ref. [155]
for overview). The more realistic (or more intuitively understandable) dynamo models
are based on the idea that in a highly conducting fluid, magnetic field lines can be ran-
domly stretched and bent by turbulent velocity field, the process that amplifies the mag-
netic field [180–182]. For example, in the Zeldovich “stretch-twist-fold” dynamo model
(which is referred to as fast dynamo [155]) each round of velocity-induced stretch, twist
and fold of the magnetic field lines increases the field strength by factor of 2; reoccur-
rence of this process (n times) leads to the growth of the field by a factor of 2n (see e.g.,
Figure 4.6 in Ref. [155] and Figure 2 in Ref. [183]). Dynamos are usually divided into
large- and small-scale dynamos. While the large-scale dynamos (mean-field dynamo)
require anisotropy, the small-scale (turbulent/fluctuation) dynamos are studied in a homo-
geneous, isotropic setting. The small-scale dynamos can be of main interest for our work
on galaxy cluster scales since (1) the growth rate of the field is expected to be larger in
this case and (2) turbulence can still source dynamo action in the absence of large scale
rotational motions (being necessary for mean-field dynamos).

The idea that a magnetic field can be exponentially amplified by a random flow was
initially qualitatively introduced by Batchelor [180]. He discussed that in turbulent flows
particles would diffuse apart, stretching the lines along which they move. In a similar
way, in a highly conducting, incompressible fluid, if the damping of the magnetic field
is less effective compared to the stretching of the magnetic field lines by a random flow,
then magnetic energy will grow. This growth is governed by the small-scale part of the

4This is a process of damping of the small-scale acoustic oscillations (driven by the
pressure gradients associated to the density perturbations) due to photon diffusion towards
the end of the recombination epoch.
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kinetic energy spectrum. Batchelor made an analogy between the induction and vorticity
equations arguing, that after some time, the system reaches an equilibrium state (although
as mentioned by the author this is different from the scale-by-scale equipartition between
kinetic and magnetic energies; such equipartition has not been observed in MHD sim-
ulations of e.g., Ref. [26] either). Later, Kazantsev [184] introduced a more rigorous
approach with velocity being a Gaussian, random field; in that case, velocity can be rep-
resented in the same (statistical) manner as the magnetic field through Equation (3.29)
(although without helical part, i.e., ignoring the last term in Equation 3.29):

Tij(r) =
(
δij −

rirj
r2

)
TN(r) +

rirj
r2

TL(r). (3.40)

Using the Equation (3.29) for the magnetic field, from the induction equation one gets
(see Ref. [184] for pioneering work and Ref. [155] for a review):

∂ML

∂t
=

2

r4
∂

∂r

[
r4ηT (r)

∂ML

∂r

]
+GML (3.41)

where ηT is the sum of microscopic and turbulent magnetic diffusivities. the term G
includes first and second derivatives of Tij and sources the generation of the magnetic
field by velocity shear. If magnetic energy spectrum is peaked on much larger scales than
the viscous scale, then the above equation can be written in Fourier space for scales that
are larger than viscous scales [185, 186]:

∂EB
∂t

=
γ

5

(
k2
∂EB
∂k2

− 2k
∂EB
∂k

+ 6EB

)
− 2ηk2EB (3.42)

where γ = −1/6[∇2Tii(r)]r=0 describes shearing by the flow. Without diffusion (η ∼ 0)
the equation describes the evolution of the magnetic energy spectrum whose peak moves
toward smaller and smaller scales (so-called forward cascade) while the energy devel-
ops EB(k) ∝ k3/2 spectrum and its amplitude grows exponentially (see e.g., Eq. 11 in
Ref. [26]). However, note that such a solution is not valid if the peak of the magnetic
energy spectrum reaches resistive scales. Even though the Kazantsev theory has been
obtained for the non-helical flows, its framework has also been used in Refs. [155, 187],
incorporating helical flows [155] and diffusion of the magnetic field (in particular, the
ambipolar diffusion which is caused by a Lorentz-force-induced relative velocity between
ions and a neutral component of the fluid [187]).

Previously performed MHD simulations have shown that exponential growth of the
magnetic field indeed takes place in the forced-turbulence setups. In such setups, Euler
equation contains an additional, forcing term that drives turbulent motions in the sys-
tem. In general, the results of these simulations (and thus, the efficiency of dynamo)
depend on different factors, including magnetic and kinetic Reynolds number, Prandtl
number, driving force nature (e.g., whether it is solenoidal or compressible), and also,
type of turbulence, e.g., its spectrum and whether it is regarded as a subsonic or super-
sonic (controlled by the Mach number, the ratio of fluid velocity to the local speed of
sound). See e.g., Refs. [26, 188–192], and Refs. [155, 183, 193, 194] for reviews. The
Kazantsev scaling and exponential growth of the field have been found both in the sub-
sonic [192] and supersonic regimes [189] of turbulence as well as in the incompressible
MHD simulations (e.g., [26]). Although as it is noticed in Ref. [26] Kazantsev’s scaling
can also be a mere coincidence in numerical simulations since there is not a one-to-one
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comparison of the model proposed by Kazantsev and the simulation results. The similar
scaling/growth (although less efficient than in the pure MHD simulations) of the mag-
netic field has also been obtained in the MHD simulations taking into account gravity
effects, e.g., in the case of isolated spherical collapse (see e.g., Ref. [195]) or during
galaxy (see e.g., Refs. [196, 197]) and galaxy cluster formation (see e.g., Refs. [45, 79],
and Refs. [78, 194] for reviews). However, one should be aware that such simulations do
not take into account any non-ideal MHD effects.

Given the fact that small-scale dynamo is an efficient amplification mechanism of the
magnetic field, one might wonder what is the typical timescales required for this process
to explain observed µG strength fields found in galaxies and galaxies clusters. As we
will see in Section 4.1 the seed magnetic field strength depends on the magnetogenesis
scenarios. Assuming inflationary magnetogenesis produces fields with the strengths of
10−30 − 10−20G then dynamo should operate very efficiently, exponentiating the field
strength by a factor of ∼ 33 – 57. The growth of the field, as we already mentioned,
occurs on turbulent eddy scales. In galaxy clusters, eddy turnover time is ∼ 0.1 Gyr
(assuming teddy = L/v with L = 500h−1kpc and v = 1000 km s−1). This is much
smaller than the galaxy-cluster lifetime (∼ billion years). Although there must have been
enough time for the dynamo mechanism to act, it is also possible that the magnetic field
reaches saturation quite early on, thus quenching its further amplification or interfering
with the large-scale dynamo action; see Refs. [185,187], and Refs. [155,183] for reviews.
Generally, as it has been discussed in Refs. [155, 198], small-scale dynamos could act
in combination with large-scale dynamos. In addition, during the formation of galaxy
clusters, magnetic fields can also be amplified due to adiabatic contraction (see below).
Thus, all these mechanisms might still lead to efficient growth of an initial weak seed
fields on galaxy and galaxy cluster scales.

Finally, it should be mentioned that magnetic field grows during adiabatic contrac-
tion of a collapsing object which implies flux freezing of the magnetic field lines (see
Section 3.2). For instance, for a spherically and isotropically collapsing gas cloud, con-
serving its mass (ρR3) and magnetic field flux (∝ BR2), magnetic field is expected to be
amplified as (see Refs. [23, 169] for reviews):

Bfin

Bin
=

(
ρfin

ρin

)2/3

(3.43)

where subscripts “in” and “fin” corresponds to field (magnetic and gas densities) values
at the initial and final phase of the gravitational collapse. If we assume that the difference
between matter densities of the IGM and galaxies is ∼ 106 then we see that µG fields in
galaxies would be obtained if the field strength at the onset of the gravitational collapse
was ∼ 10−10G. In cosmological simulations, one often compares amplification of the
field due to pure adiabatic contraction and due to small-scale dynamo action (as an exam-
ple for galaxy cluster scales see Ref. [45]). However, it should also be noted that if the
collapse is not isolated as is the case of galaxy clusters (undergoing a series of mergers)
one cannot estimate the growth due to “purely” adiabatic processes.
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Figure 3.2: Constraints on the magnetic field strength versus scales that have been used as
characteristic scales of the magnetic field in the corresponding studies (i.e., when defin-
ing the magnetic energy spectrum). The constraints are grouped according to the tech-
nique employed in the shown references. For instance, yellow colour shows constraints
from the studies focusing on RMIGM (see Section 1.2; Refs. [13–15]); pink and purple
colours refer to estimations on the bridges’ scales based on the equipartition hypothe-
sis (Refs. [2, 16, 17]); the crimson red shows constraints from the RM measurements in
galaxy clusters (including a measurement on the relic scale; Refs. [18–20]). An important
caveat the reader should be aware of is that RM measurements in galaxy clusters relies
on the assumption of the certain shape of the magnetic energy power spectrum; we show
constraints from such measurements with the minimum (1/kmax) and maximum 1/kmin

scales employed in those studies. The red, blue and green arrows from the Planck data
analysis [21] corresponds to the constraints for the helical, nonhelical and scale-invariant
PMFs (characterised with the scale-invariant spectrum), respectively. In this analysis, the
constraints are obtained for the magnetic field amplitude that is smoothed over a comov-
ing scale L = 1Mpc.
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Chapter 4

Early Universe: generation and
evolution of PMFs

PMFs could come from different generation scenarios, involving inflation and phase tran-
sition epochs, and recombination. Although this chapter focuses on inflationary and
phase-transitional magnetogenesis we note that a number of other proposals have been
put forward to explain the generation of PMFs. Regardless of magnetogenesis scenarios,
produced “seed” fields should satisfy following criteria: they should be (i) weak enough
to preserve spatial anisotropy of our Universe, and (ii) strong enough to seed their subse-
quent growth during structure formation (in order to be in agreement with the observed
strengths in galaxies and galaxy clusters).

In the first part of this chapter, we will overview the main ideas of the inflation and
phase-transitional magnetogenesis scenarios and their outcomes in terms of the magnetic
field strength and/or the spectrum of the field. In the second part of the chapter, we will
present the results from the works where the pre-recombination evolution of PMFs have
been studied in the “freely decaying turbulence” regime. Understanding this aspect of
PMF physics is of relevance to the novel approach presented in our studies. We also note
that this chapter relies on the existing review papers [6, 23, 40, 146, 169, 199] on PMFs
where a more detailed description of the topics discussed here can be found.

50



4.1 Magnetogenesis scenarios
In Introduction we mentioned that magnetic fields cannot be generated from an initially
zero magnetic field in the classical limit, i.e., within the strong coupling condition of elec-
trons and protons. This is clear from the induction equation (Equation (3.10)) where the
source terms on the RHS of this equation require preexisting magnetic field. However,
the source terms for the B = 0 case can be present if we go beyond the MHD limit. For
example, magnetic field could be generated if there were charge separation processes in
the charge neutral Universe. Such scenarios, for the first time, have been proposed by
Biermann [48] and Harrison [49]. The Biermann battery mechanism requires presence
of non-parallel temperature and density gradients in the fluid. If this condition is satis-
fied, electrons are accelerated more than ions because of their smaller mass; this process
generates electric currents and if the current vorticity is not zero then magnetic fields are
produced through the Ampere law [200]. This seed field generation mechanism has been
discussed in the context of PMF generation during phase transitions (see below) as well as
e.g., in the context of field production during reionisation [201]. Alternatively, Harrisson’s
mechanism proposes that Thomson interaction (scattering of photons and charged parti-
cles) cross section is more effective for electrons than for protons, leading to generation of
currents and then to magnetic field in the presence of rotation (or vortical perturbations)
in the plasma. Ref. [202] has shown that the tight-coupling approximation must be broken
at first order in order the magnetogenesis to take place in this scenario.

In the next sections we discuss PMF generation during phase-transitions based on
the ideas mentioned above while briefly commenting on the generation scenario due to
the Higgs field. Inflationary magnetogenesis is discussed in the setting where the con-
formal invariance of the electromagnetic action is broken. See also some of the recent
works [203, 204] discussing whether semiclassical magnetogenesis is possible in a quan-
tum mechanical setting.

4.1.1 Inflationary magnetogenesis
Inflationary magnetogenesis is an attractive scenario for generating large-scale magnetic
fields. The coherence scale of the seed field originating from quantum fluctuations of
the vector potential can be stretched on scales larger than the Hubble horizon and thus,
ensuring magnetisation of the largest scales of the Universe. However, in the standard
Maxwell theory, the solution of Maxwell equations (Equation (3.6)) is plane waves and
due to conformal invariance of the electromagnetic action the field energy decays as 1/a4

in the expanding Universe. The post-inflationary seed field might have amplitudes as low
as ∼ 10−50G [40] which require unrealistically efficient dynamo growth in the subse-
quent epochs. It then follows that the conformal invariance of electromagnetism must
be broken to give rise to larger-amplitude seed fields. See Refs. [54, 55] for pioneering
works and Refs. [23,40,146,170], for reviews. In addition, Ref. [205] discussed that apart
from producing tiny fields inflation could also generate the large vector fluctuations at the
quantum level which would serve as initial conditions for their classical evolution. Below
we will only give examples for the weak seed field generation during inflation, i.e., the
former scenario.

Many theories, invoking the breaking of the conformal invariance of electromag-
netism, have been proposed in the literature (see Refs. [23, 40, 146, 148, 170, 206] for
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a review). In such scenarios, electromagnetic action can be written:

SEM =

∫
d4x

√
−g

{
− 1

4
FµνF

µν + coupling terms
}
, (4.1)

where the coupling terms introduce the coupling of the electromagnetic field to a time
dependent background field, such as e.g., inflaton or another coupling that breaks confor-
mal invariance. This form of action ensures that the theory recovers the standard Maxwell
theory at later times. One of the most-studied models of inflationary magnetogenesis is
the so-called Ratra model [55] which uses the coupling term in the form of ∝ eαϕ

′
FµνF

µν

where ϕ′ is the scalar inflaton field. Since the scalar field is a time-dependent quantity
(slowly varying function of scale factor, a(t)), magnetic fields are also treated as time-
evolving classical fields. The total action of the system includes the action for the infla-
tion field and the electromagnetic action (Equation 4.1). The equation of motion is then
solved for the vector potential perturbation in the Fourier space [55] (see also Eqs. (36-42)
in Ref. [23]). The exact solution for the vector potential, A(k, t) and therewith, for the
magnetic energy density EB(k, t) depends on the form of the coupling function. If the
coupling function is a simple form of the scale factor ∝ aα [207], where α is a parameter,
one obtains the scale invariant spectrum for the PMF dEB(k)/dlog(k) ≈ χHinfl

2 with
χHinfl being the Hubble scale during inflation. Such scenario leads to 10−12G magnetic
field strength on large cosmological scales today.

Problems for the Ratra and Ratra-alike models (e.g., Refs. [208–210] ) are the back-
reaction and strong coupling [211]. The former arises if the magnetic energy density
becomes large and can, in turn, affect the inflationary expansion. The strong coupling
problem, on the other hand, is related to the time evolution of the coupling function;
i.e., if there is a strong coupling between the scalar field and electromagnetic field at the
beginning of inflation the perturbative quantum field theory can no longer be used for the
evolution equation of the vector potential (see also [212] for a review on the problems).
The back-reaction problem can be avoided in the weak coupling mode by a suitable choice
of parameters such as e.g., the power law index for the magnetic energy spectrum. In the
most admissible case, the magnetic field strength is constrained to be < 10−32G on Mpc
scales [211]. In addition, in some extensions of the Ratra model these problems have
been evaded (see e.g., [212–214]). For instance, Ref. [212] has shown that by lowering
the energy scale of inflation along with a prolonged reheating scenario avoids the back-
reaction and coupling problems and leads to ≳ 10−13G-strength PMFs on Mpc scales. In
the same reference, a more complex coupling function (consisting of piecewise sections
with different slopes) has also been used to overcome the mentioned problems.

Apart from the Ratra-like models alternative scenarios of seed field production have
also been discussed in the literature. In these scenarios, conformal invariance is broken
e.g., by introducing the coupling of electromagnetic action to the curvature (R, [54]), a
pseudo-scalar field such as e.g., the dark matter candidate axion [215], or to the scalar-
tensor gravity [56]. The latter model generates PMF which is a uniform, constant field
(see also [216]). In addition, recent works investigate the generation of helical fields (e.g.,
Refs. [217–221]) during inflation; e.g., Ref. [217] introduces the coupling of electromag-
netic action to the parity-violating term which leads to the blue power spectrum (∼ k) of
the helical magnetic field. On the other hand, the model employed in Ref. [219] leads to
generation of scale-invariant helical fields with B ≃ 10−15G on ≲ Mpc scales.
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4.1.2 Phase-transitional magnetogenesis
Primordial seed magnetic fields could be generated during EW or QCD phase transitions.
The current understanding of these epochs is such that the transitions should be crossovers
(i.e., smooth transition between two phases) rather than the first or second-order transi-
tions (see e.g., [222–225]). However, in many modifications of the standard model both
EW and QCD phase transitions can still be of the first order [226–228]. In addition, the
generation of random seed magnetic fields has been proposed during cross-over phase
transitions.

The seed magnetic field generation during first-order phase transitions involves “vi-
olent”, non-equilibrium processes such as bubble nucleation, collisions, and explosions.
A general idea that has been applied to both EW and QCD phase transitions, is that,
such a first order phase transition can generate weak seed fields through charge separa-
tion processes. Generation of seed fields through the Biermann battery mechanism has
been explored in Refs. [165,229]. During the QCD phase transition a net positive charge,
which is due to baryon asymmetry, is balanced by an excess negative charge in leptons.
However, pressure gradients generated e.g., during shocks [230] affect the quarks and
leptons differently which gives rise to an electric field. Turbulence is produced as a result
of bubble collisions on the scales of bubbles’ size, Lb and thus, ∇ × E ̸= 0 and mag-
netic fields could grow. For the QCD epoch, Ref. [229] finds Bl ∼ 5 nG when the field
is correlated on scales one-two orders of magnitude smaller than the Hubble scale, χH
at the moment of generation. By assuming that on scale L the field amplitude scales as
BL = Bl(l/L)

3/21, this will result into ∼ 10−17G strength of the field on ∼ 1010 cm scales
at the epoch of recombination. The amplitude is decreased if one considers even larger
scales (such as galaxy scales, ∼ 100 kpc) and thus, such a tiny fields (and correlated on
small scales) may not be relevant for their growth during structure formation.

Subsequent studies [230–232], using more complex analysis, have also explored sce-
narios based on the charge separation processes. In these works, it is assumed that dipole
charge layers are formed on the surfaces of the phase transition bubble walls whose mo-
tion generates electric currents and magnetic fields. For instance, Ref. [232] derives the
charge density distribution on bubble walls and argues that hydrodynamic instabilities
produced by the expanding bubble walls will generate seed magnetic fields. These in-
stabilities will also lead to the development of turbulence which, in turn, non-linearly
amplifies seed fields. In the equipartition phase, authors estimate the order of 10−29G
and 10−20G field strengths on 10Mpc scales for the EW and QCD phase transitions,
respectively.

The magnetic energy power spectrum, EB(k), of the phase transition-generated field
is often conveniently split into its large-scale, ELS

B and small-scale, ESS
B parts (see also

Figure 4.4 in Section 4.3). In general, this formulation also applies to inflationary mod-
els; although, in this latter case, transition from the large to small-scale spectrum occurs
on much larger scales than the characteristic scale for the phase-transitional scenarios,
that is, kinflpeak ≪ kPTpeak [163], or alternatively, Linfl

EB(k) ≫ LPT
EB(k). The coherence scale

of phase transition-generated primordial seed magnetic field is commonly assumed to be
the fraction, fc, of the Hubble horizon; that is, λB,phys = fcχH,phys, and for the comov-
ing magnetic correlation length: λB,com = λB,phys(a0/a). In order to calculate χH,phys

1This is an assumption that a volume V = L3 contains N = (l/L)3 uncorrelated
volumes so that the overall amplitude of the field over the volume V is decreased by a
factor N ; see also discussion in [166] where this scaling has been criticised.
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we recall that χH,phys = cH−1 where H = 1.66g
1/2
∗ T 2 with g∗ being the effective de-

grees of freedom, T measured in MeV and H in s−1.2 Then for the comoving magnetic
correlation length we have:

λB,com = fc
c

1.66g
1/2
∗ T 2

cm, (4.2)

which corresponds to
λB,phys ∼ 2.6 · 1014fc cm (EW)
λB,phys ∼ 1.9 · 1017fc cm(QCD)

(4.3)

for the field generated during EW or QCD phase transitions, respectively. One can see that
even for the large fc coherence scale of the phase transition-generated seed field is much
smaller than the observed correlation lengths (of the order of few tens of kpc) derived
from e.g., Faraday rotation measurements (e.g., [34]) in galaxy clusters. As we will see
in Section 4.2 this situation can change when one accounts for the MHD decay effects of
the generated field in the radiation-dominated epoch.

The large-scale part of the magnetic energy spectrum of the phase transition-generated
has been argued in Ref. [166] to fall sharply, satisfying Batchelor spectrum ELS

B ∝ k4 in
order to preserve causality combined with the divergence-free field requirement. How-
ever, smoother slopes have also been discussed the literature, such as e.g., the so called
Saffman spectrum ∝ k2 (i.e., white noise spectrum, [165]). As we shall see in Section 4.2
both of these spectra can emerge during MHD evolution of the generated seed field and the
realisation of these spectra depends on the driving nature of the turbulent magnetic field.
On the other hand, the small-scale part of the spectrum is usually assumed to quickly
converge into Kolmogorov ESS

B ∝ k−5/3 scaling during MHD evolution.
A primordial seed field, with similar properties discussed above, could also be gener-

ated directly from the Higgs field (see Ref. [234] for pioneering work, Refs. [235–237]
for subsequent studies and Refs. [238, 239] for some recent works). In this case, an elec-
tromagnetic field is constructed in a way that is different from its classical representation
(Equation (3.2)) and the seed field is generated from the gradients of the Higgs field. As
pointed out in Ref. [6] the model can be as robust as the generation of the seed field in
the “classical” electromagnetism, especially, after the discovery of the Higgs field. With-
out further going into details of this model we note that the magnetic energy spectrum
is obtained to be ELS

B ∝ k3 (see section III in Ref. [6] for a more detailed discussion on
the expected spectrum and generally, about the Higgs mechanism) and its energy peaks at
LEB(k) scales. Ref. [6] estimates the strength of such a field to be 10−18G on kpc scales.

Various scenarios have been proposed for the generation of helical PMFs (see [6] for
reviews). These scenarios include e.g., generation of helicity from a coupling of PMF with
axion field [240, 241]. Generally, physical processes associated to EW phase transitions
are expected to generate helical PMFs [58,60,242]. Production of helical fields is of great
relevance for explaining the magnetisation of large scale structure since helical fields lead
to larger coherence scales during their evolution in the radiation dominated epoch (see
Section 4.2).

2We remind the reader that the latter equation comes from the Friedmann equation
(Equation (2.15)) where for the radiation dominated epoch the density field ρr =

π2

30
g∗T

4

(see e.g., [233]). The effective degrees of freedom depends on particle species and tem-
perature. For the EW and QCD phase transitions g∗ = 100 and g∗ = 60, respectively.
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Figure 4.1: Evolution of magnetic (solid lines) and kinetic energy spectra (dashed lines)
for the magnetically (left panel) and kinetically dominated turbulence (right panel). Thick
line shows spectra at final time. The slopes indicated in the left and right panels are: 3, 2,
2, and 1/2, and 2 and 3, respectively. The wavenumbers are normalised by k1 = k0/30
where k0 = 2π/λ0 is determined by the largest bubble size λ0 (λ0 = fcλH,phys. Figure
credit: [22].

4.2 Pre-recombination evolution of PMFs
In the previous sections, we discussed the generation of primordial seed magnetic fields
during inflation and phase transitions and the expected spectral characteristics of such
fields. In this section, we focus on their evolution from the moment of generation until
the recombination epoch. As we pointed out in Sections 3.1 and 3.8, in the absence
of resistivity, in a high conductivity limit magnetic field decays as 1/a2; however, the
concept of simple adiabatic dilution has to be abandoned when the effects of turbulence
can become important. Turbulence could be generated either during inflation through the
inflaton decay to standard model fields, or as discussed in Section 4.1.2 during first-order
phase transitions. This motivates us to discuss the pre-recombination evolution of PMFs
in the turbulent regime. A detail worth noting is that while the early phase of turbulent
small-scale dynamo is required to amplify initially tiny seed fields, generated either during
inflationary or phase-transitional magnetogenesis, at later times, the field is expected to
decay and its evolution is studied in the so-called “freely decaying turbulence” regime.
Thus, in principle, we can think of this regime as a late, saturation/post-saturation phase
of small-scale, turbulent dynamo action.

The evolution of magnetic field in the decaying turbulent regime has been studied
analytically (see e.g., [76]) as well as by using the direct numerical simulations (e.g.,
[22]). In the latter case, the whole set of non-linear MHD equations (Equations (3.10),
(3.22) and (3.23)) are solved numerically in order to understand the complex evolution
and resulting structure of the magnetic field. The exact form of the system equations
depends on the problem being addressed and the numerical code being used. Generation
of turbulence is usually accounted for by the driving force in the equations; the term
corresponding to this force is present in the Euler or induction equations only at initial
times until the equipartition between kinetic and magnetic energies is reached and then the
free-decay phase of turbulence is studied (see, e.g., [243,244]). In the case of inflationary-
generated PMFs, one can think of this driving force as a generation of turbulence after
inflation, during an epoch of reheating [216]. In the case of phase-transitional PMFs,
Ref. [57] studied two types of the driving forces that mimic the action of bubble-induced
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external forces in the plasma. In the first case, the initial velocity of the fluid is zero
and magnetic energy is “injected” in the flow; i.e., initial magnetic field has a Dirac delta
function power spectrum peaked on the scale that is associated to the turbulent eddy size.3

This case is called magnetically dominated turbulence. In the second case, the magnetic
field has a Batchelor spectrum (∝ k4) and instead, kinetic energy is injected into the
system (again, with a delta function spectrum); this case is called kinetically dominated
turbulence.

The evolution of the kinetic and magnetic energy spectrum for the described two sce-
narios is shown in Figure 4.1. Freely decaying MHD turbulence regime leads to a dis-
tinguishable spectrum in magnetically and kinetically dominated cases. In the former
scenario, the magnetic field keeps the Batchelor spectrum on large scales ELS

B ∝ k4,
while the former scenario leads to the scaling which is shallower than that for ELS

B ∝ k3

spectrum [57]. Thus, the slope of the magnetic spectra on large scales can vary between
the Saffman (∝ k2) and the Batchelor spectrum. Ref. [243] has also studied the evolution
of QCD-generated PMF [245] in a magnetically dominated turbulence regime. Authors
confirm the ELS

B ∝ k4 scaling for the driving force which consists of plane monochro-
matic waves and fractional helicity, while on small scales ESS

B ∝ k−5/3 is obtained. In
addition, the recent work [29] has also shown that, in the kinetically dominated turbulence
regime (although with a weak magnetic field; i.e., contrary to the magnetic field used in
Ref. [57]) the Batchelor spectrum occurs on scales larger than the energy-containing scale
of turbulence and in the kinematic stage of the dynamo, while the Saffman spectrum is
obtained in the saturated case [29]. In Table 4.1 we summarise some of the scalings of
the magnetic energy spectrum that is expected from the MHD turbulence studies.

Another important result that we see in Figure 4.1 is that not only the final state of
turbulence, i.e., the peak of the kinetic energy spectrum, but the spectrum of the mag-
netic field also shows dependence on the initial driver of turbulence. While the peak of
the magnetic energy spectrum shifts towards small wavenumbers for both driving modes
(so-called inverse cascade; discussed below), the larger characteristic scale (LEB(k)) of the
magnetic field is obtained when turbulence is magnetically dominated. Thus, for the phase
transition-generated PMF, its post-recombination spectral characteristics will depend on
the physics of phase transitions. On the other hand, if the magnetic field was generated in
the earlier epoch, turbulence in the phase-transition epoch might be magnetically domi-
nated; then it will back-react to the evolution of PMF and affect its spectral characteristics.
Although the discussed model presented in Ref. [57] is not exhaustive it still gives us an
idea of the evolution of phase-transitional-alike PMFs in the pre-recombination Universe.

Numerical MHD simulations have shown that evolutionary trends of phase-transitional
PMFs is helicity dependent. This is illustrated in Figure 4.2 where the evolution of mag-
netic (red lines) and kinetic energy spectra (blue lines) is shown for the magnetically
dominated turbulence case with zero (right panel) and non-zero magnetic helicity (left
panel). Similarly to the magnetic spectra shown in Figure 4.1, here we again see that
magnetic energy decreases on small scales and shows an increase towards large scales.
This is known as the inverse cascade [76, 163, 246–249], i.e., the process of the energy
transferring from small to large scales accompanied by an increase in the magnetic cor-

3An alternative of this procedure is simply to take the initial (magnetic/kinetic energy)
spectrum which is e.g., Batchelor on large scales and Kolmogorov on small scales. In
that case [24], no Dirac delta function is used for mimicking the injection of turbulence.
However, since a short period of initial driving with the Dirac delta function also leads to
a turbulent spectrum these two methods can be equivalent.
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Large-scale spectrum (ELS
B ) Origin/occurrence in MHD simulations

k3/2 (Kazantsev)
• Kazantsev theory [184], Section 3.8.
• dynamo (Pr ≥ 1) - kinematic phase.

k2 (Saffman)
• Phenomenological [165], Section 3.5.
• dynamo (Pr ≥ 1) - saturated phase;
• non-helical decaying turbulence.

∼ k3 • Dynamo (Pr ≥ 1) - kinematic phase.

k4 (Batchelor)
• Phenomenological [166], Section 3.5.
• dynamo (Pr ≥ 1) - kinematic phase;
• helical decaying turbulence.

Table 4.1: Large-scale spectrum of the magnetic field expected from theory (the first
rows in each cell of the second column) or from the MHD simulations (the rest of the
rows in each cell of the second column). As Ref. [29] noticed recently the existence
of the Kazantsev spectrum requires the large scale separation between the largest and
forcing wavenumbers. On the contrary, for the Batchelor spectrum to be seen in the MHD
simulations it is necessary that there is enough scale separation between the smallest and
forcing wavenumbers.

relation length. An important feature of the figure is that final characteristic scale of the
magnetic field depends on helicity. Helical fields lead to a slowdown of the decay due to
conservation of magnetic helicity.4 This is accompanied by speeding up the growth of the
magnetic field coherence scale; i.e., the final peak scale of the magnetic field is larger in
the helical scenario than in the non-helical case.

Ref. [24] has shown that the MHD turbulent decay of EW phase transition-generated
field in the radiation-dominated epoch leads to an increase of the magnetic correlation
length as a function of conformal time τ . If the initial magnetic field is non-helical, the
increase is λB ∝ τ 1/2, whereas if it is fully helical, the increase is λB ∝ τ 2/3. The final
coherence scale of the QCD phase transition-generated field can be even larger as a result
of larger initial correlation lengths in these models (Equation (4.3)). The decaying tur-
bulence is invariant under rescaling with the correlation length λB; this allows to rescale
initial magnetic field to any desired epoch based on the initial value of λB. Finally, it
should also be mentioned that similar values of the field strength and correlation length is
found in Ref. [76] where the authors accounted for the dissipative processes (e.g., due to
photon-neutrino diffusion and free streaming in the early Universe) in their analysis.

In Figure 4.3 we show the MHD evolution of inflationary PMFs. In the left panel of
the figure, the evolution of PMF with a scale-invariant spectrum is shown. As we can see,
the magnetic field decays on all scales and develops turbulent k−5/3 scaling, although no
inverse cascade is observed. In the later work, Ref. [163] has also studied the evolution
of an inflationary, scale-invariant field whose spectrum has an infrared cutoff on large
scales, ELS

B ∝ k4 (we remind a reader that in such scenario kinflpeak ≪ kPTpeak ). In this latter
work, authors have shown that for a certain wavenumber range (close to the peak of the
spectrum, k > kinflpeak) the magnetic energy power spectrum still will be characterised by

4The latter feature of helical fields itself leads to the so-called realizability condition
which implies that helicity is bound by magnetic coherence scale and energy; that is
H ≤ 2λB(⟨B2⟩/2). See Ref. [163] for more details and references therein.
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Figure 4.2: Evolution of kinetic (blue) and magnetic energy spectra (red) in the mag-
netically dominated turbulence regime (resembling the phase-transition magnetogenesis
scenario). Thick line shows spectrum at final time. The black solid line shows Batchelor
scaling and k0 indicates the wavenumber associated to the peak of the spectrum at initial
time (or driving scale). Figure credit: [22].

Figure 4.3: MHD evolution of inflationary PMFs characterised by an initial, scale-
invariant (left panel) or Dirac delta spectrum (uniform distribution). As in Figure 4.2,
the red and blue lines indicate magnetic and kinetic energy spectra, respectively. Thick
line shows spectrum at final time. Note that left panel can be regarded as magnetically
dominated case (see the text; with helicity) while in the right panel initial velocities differ
from zero (kinetically dominated case which includes initial forcing; without helicity). k0
is same as in Figure 4.2; k∗ is the driving scale. Figure credit: [22].

the scale-invariant spectrum (see also Figures 4,7 in Ref. [163]).
Inverse cascade is absent for another inflationary scenario, which we refer to as Muko-

hyama model. Contrary to the models discussed above, in this case, the magnetic field
is a uniform, constant (rather than stochastic, statistically homogeneous) field that can
be considered as a local approximation of a slowly varying background field [216]. As
argued in Ref. [216], the MHD evolution of such a field can be quite different from the
evolution of the large-scale-correlated, scale-invariant field. The tangling of the uniform
field by turbulence leads to Saffman scaling for the magnetic energy spectrum. During
this process magnetic coherence scale increases but as pointed out by the authors, this is
not due to the real inverse cascade but due to a rather faster decay of the spectrum at larger
k compared to the decay of the spectrum at small wavenumbers.
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Figure 4.4: Left panel: Possible characteristic spectra for inflation- and phase transition-
generated PMFs. The figure credit: Ref. [23].

4.3 Summary

Predicted spectrum of the field from primordial magnetogenesis scenarios. We have
seen that PMFs could be generated through various magnetogenesis scenarios during in-
flation and phase transitions. The predicted structure (topology) and amplitude of the
generated field may vary from theory to theory. Figure 4.4 shows expected spectral char-
acteristics for some of the inflationary and phase-transitional generation scenarios. Note
that the figure shows dρB/d(logk) where ρB is related to the magnetic energy power spec-
trum EB(k) in our notation through: EB(k) = k2ρB(k); that is, ns = −3 corresponds to
the scale-invariant spectrum EB(k) = k−1. As can be seen from the figure, the largest
differences in the shape of the power spectrum of inflationary and phase-transitional fields
are expected on the largest scales of the Universe when inflationary and phase-transitional
magnetogenesis leads to the scale-invariant and Batchelor (ns = 2) magnetic energy spec-
tra, respectively. We will see that this is the case even for the late evolution of PMFs,
during structure formation (Chapters 6 and 7). On smaller scales, it is expected that the
initial shape of the spectrum is irrelevant since the turbulence will lead to Kolmogorov
forward cascade with αB = −11/3 scaling (or −5/3 scaling for our notation; see below).

Evolution in the radiation-dominated epoch. The evolution of PMF proceeds as
“freely decaying turbulence” in the radiation-dominated epoch. The pre-recombination
evolution of inflationary and phase-transitional PMFs have been studied with MHD sim-
ulations assuming inflation leads to scale-invariant magnetic energy spectrum and phase
transition-generated fields have blue spectrum (i.e., most of the magnetic energy concen-
trated on smaller scales; [57, 163]). It has been shown that the correlation length of the
small-scale (phase-transitional) as well as the large-scale correlated (inflationary) primor-
dial field increases, although much more efficiently in the former case due to an inverse
cascade.
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Figure 4.5: Dependence of the magnetic field amplitude on coherence scale. Different
color lines show turbulent evolution of Brms in the non-helical, helical or fractionally
helical cases. Circles indicate the final characteristics of phase transition-generated PMFs
at recombination. Figure credits: Refs. [23, 24].

The slope of the large-scale spectrum of phase transition-generated PMFs (after their
MHD decay) depends on the underlying nature of turbulence during phase transitions;
e.g., whether the turbulence is magnetically or kinetically dominated and ELS

B can com-
monly be approximated either by Batchelor or Saffman spectrum. In addition, the phase-
transitional helical field attains a larger coherence scale than the phase-transitional non-
helical field. These evolutionary trends of EW phase transition-generated helical and
non-helical fields are summarised in Figure 4.5. We see that if a magnetic field is gener-
ated at the horizon scale with a strength limited by BBN, a fully helical (non-helical) field
reaches a (comoving) magnetic field strength of 0.3 nG (3×10−3 nG) at a scale of 30 kpc
(0.3 kpc) at the epoch of recombination. Thus, we see that inverse cascade is an efficient
process, increasing magnetic correlation length by orders of magnitude from the moment
of generation till the recombination epoch. It turns out that both EW and QCD phase
transition-generated seed magnetic fields can reach even larger coherence scales if one
applies BBN bounds not to the time of generation of the seed field, but to the later times,
at the epoch of BBN (see the constraint plot, Figure 1 in Ref. [250]). Ref. [250] have
shown that QCD phase-transition generated magnetic field reaches ∼ 300 ckpc coher-
ence scales (if the field is fully helical) by accounting for the decaying nature of turbulent
sources between the time of generation and BBN. Finally, it should be noted that for
the phase-transitional field generated from the Higgs field helical PMF reaches 10−11G
strengths on 10 kpc scales at the recombination epoch [6].

The structure of the PMF at the recombination epoch is distinguishable for different
inflationary models as well. An imposed (uniform) field develops a characteristic peak
during its MHD decay, while the scale-invariant model will still be characterised by the
largest power at the largest scales [216]. Even though no inverse cascade has been ob-
served for such models the correlation length of inflationary PMF is expected to be larger
than those of phase transition-generated PMFs (due to the fact that their post-generation
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coherence scales are not bounded by the Hubble horizon scale).
Thus, in general, we can conclude that PMF characteristics such as the amplitude

and coherence scale of the field at the recombination epoch will depend on (i) details of
the particular magnetogenesis model and (ii) evolutionary trends in the pre-recombination
Universe. We will see that these characteristics are of notable relevance for their evolution
in the post-recombination Universe, during structure formation (see Chapters 6 and 7).

Evolution across recombination-epoch and during dark ages. Finally, one should
mention what is the fate of PMFs across the recombination epoch and dark ages. It should
be noted that the freely decaying turbulence regime is terminated when the damping term
in Equation (3.23) becomes important on magnetic coherence scales. In the free streaming
regime, there are Alfvén and compressible modes that are still damped. In the post-
recombination Universe, on the other hand, damping is subdominant compared to the
expansion damping. In this epoch, the decaying turbulence regime is not relevant anymore
because the baryonic fluid becomes neutral (i.e.., no strong coupling between fluid and
magnetic fields any more); then the comoving amplitude, spectral shape, and helicity
of the magnetic field is expected to remain unchanged until reionisation (z ∼ 15; see
Ref. [76] and Section 6.4 Ref. [146] for more discussion on this) and structure formation.
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Chapter 5

Methods: cosmological simulations

MHD simulations help us understand the complex evolution of PMFs in the early Uni-
verse, as we already outlined in the previous chapter. Cosmological MHD simulations, on
the other hand, advance our understanding of the amplification and sustenance of PMFs
during structure formation, reproducing the magnetisation of galaxies and galaxy clus-
ters. They have also been used to understand the PMF effects on the first star [251] and
dwarf galaxy formation [73] in the simulated (250h−1ckpc)3 and (3h−1cMpc)3 cosmo-
logical volumes, respectively. In the former case, MHD simulations resolve mini-halo
scales (resolution of ∼ 400 astronomical units); in the latter case, no magnetohydrody-
namics is involved in simulations, although initial matter power spectrum includes effects
from PMFs. PMF-induced density perturbations have been accounted for in the matter
power spectra of the simulations presented in Ref. [74]. The authors studied the impact of
PMFs on galaxy formation and on the evolution of IGM during the epoch of reionisation
in a (5h−1cMpc)3 cosmological volume. The other class of cosmological simulations are
those which study the evolution of PMFs even in larger volumes (e.g., in (100h−1cMpc)3

volume, see e.g., Ref. [252, 253] to understand the impact of the initial structure of the
PMF on the final distribution of magnetic fields in the IGM. Our cosmic-web simulations
(Chapter 6) also fall under the latter category. Our galaxy-cluster study (Chapter 7), on
the other hand, is among the pioneering work where the impact of the initial topology of
the field has been studied on the ICM scales (see also [254]).

Nowadays, many of the cosmological codes include different methods for solving
the MHD equations. Examples of such codes are GADGET [255], RAMSES [256, 257],
Athena [258], Enzo [113], AREPO [259], MASCLET [260]. The comparison some of
these codes have also been done in several works (see e.g., Refs. [261, 262] for such
examples). In our projects we use the Enzo code which is a well-tested and maintained
tool for studying various astrophysical/cosmological problems. In this chapter we will
briefly review the main methods that we used in Enzo and that applies to both of the
presented projects in this thesis. The project-specific methods can be seen in Sections 6.2
and 7.2 for the cosmic-web and galaxy-cluster studies, respectively.
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5.1 Equations solved by Enzo
Cosmological simulations imply the modelling of the formation of the large-scale struc-
ture by taking into account the dynamics of all species of matter across a vast range of
spatial and temporal scales. The whole set of system equations (see below), formulated
in discrete space, are solved numerically either by grid-based, Eulerian schemes or La-
grangian, particle-based schemes. In the Eulerian viewpoint, gas is discretised on the
grid where each grid cell represents the fluid elements. In the Lagrangian solvers, on
the other hand, fluid elements are particles that move along with the flow. Tracking the
inter-particle forces then allows tracking the dynamics of the fluid. Apart from these two
methods, a new approach has also been developed in recent years. In this approach, the
computational mesh is unstructured and is defined according to a set of discrete points
that can move arbitrarily. Thus, the method combines the grid and particle-based dis-
cretisation schemes (see more details on this method based on the technique used in the
AREPO code [259] ).

The Enzo code is Eulerian, grid-based code in terms of solving fluid equations and
Lagrangian, particle-based code in terms of solving the dynamics of collisionless com-
ponents of the fluid, such as e.g., the dark matter particles. The whole set of ideal MHD
equations that are solved in our simulations (in a comoving coordinate system) is as fol-
lows [113]:

∂ρ
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+

1

a
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where ρ, v, B, E , I are the comoving density, peculiar velocity, comoving magnetic field
and comoving energy density, and identity matrix, respectively. Contrary to previous
chapter, hereafter comoving values are denoted without stars and we always refer to co-
moving values unless stated otherwise. The comoving total energy density and pressure
are given by:

E = e+
ρv2

2
+
B2

2a
, (5.5)

where e is the comoving thermal energy density. The total comoving isotropic pressure
p∗ is given by

p∗ = p+
B2

2a
, (5.6)

with an equation of state
e =

p

(γ − 1)
, (5.7)

and Possion’s equation for the gravitational potential ϕg:

∇2ϕg =
4πG

a
(ρtotal − ρ0) (5.8)

which closes the set of the equations solved by Enzo. Here, ρ0 is the mean density, and
ρtotal includes a contribution from gas and dark matter densities. Accelerated expansion of
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the Universe is accounted for in the second Friedmann (Equation (2.16)) which is used for
solving the evolution of a(t). The dark matter particle dynamics are modelled by N-body
approach using Newton’s equations:

dx

dt
=

1

a
υ, (5.9)

dυ

dt
= − ȧ

a
υ − 1

a
∇ϕg. (5.10)

Dark matter particles are coupled with the fluid by gravitational potential (through Pois-
son’s equation). Generally, these latter equations are also used to solve the dynamics of
stars while physics associated to radiative cooling and heating, or thermal conduction is
included through corresponding terms in Equation (5.2) (see Equation (3) in [113]). In
addition, in Enzo, one can also include the evolution of chemical species, such as e.g.,H ,
H+, He, He+, etc. In our cosmic web and galaxy-cluster studies, we restricted ourselves
to understanding the effects of magnetic amplification due to adiabatic processes. Thus,
we neglected radiative gas cooling, chemical evolution, and star formation or feedback
from AGN.

Numerical methods that are used by ENZO for solving the Equation system 5.1-5.4
are based on Godunov’s conservative numerical scheme. In its basic form, Godunov’s
scheme is first-order accurate and might not be appropriate for describing the system that
exhibits shocks, discontinuities, or large gradients. In our works, we used MUSCL-based
(Monotone Upstream-centered Schemes for Conservation Laws; [263]) scheme combined
with the Dedner hyperbolic divergence cleaning algorithm [264]. Specifically, we used
the second-order accurate piecewise parabolic (PLM) method for the reconstruction of
spatial variables and the second-order Runge-Kutta (RK) scheme [265] for the time in-
tegration. A few different solvers are also available in Enzo for solving the Riemann
problem. The Riemann problem is posed when there is a discontinuity at the interface be-
tween two finite-volume cells. In our setups, fluxes at cell interfaces are calculated using
the Harten–Lax–van Leer (HLL) Riemann solver. In Appendix 9.2.2 we also test another
solver of ENZO, namely the local Lax-Friedrichs, (LLF, [266]). See also Sections 6.7
and 7.5 and Section 4.1.2 in Ref. [113].

In a similar fashion, to solve the dynamics of dark matter particles Equations (5.9)
and (5.10) are finite differenced with the same timestep that is used for solving the fluid
equations. The particle positions are first interpolated on the grid and then Poisson’s
equation is solved on the (triply) periodic grid using the Fast Fourier Transform technique.
Once the forces between particles are calculated they are interpolated back to the particle
positions.

5.2 Divergence cleaning and Dual Energy Formalism
The solenoidal property of the magnetic field has been ensured by Dedner divergence
cleaning in our works, as we mentioned above. Generally, maintaining the divergence-
free constraint on the magnetic field is one of the most challenging tasks for the MHD
codes. As outlined in Ref. [267] (for more recent work, see Ref. [268]) numerical dis-
cretisation can lead to errors in keeping divergence of the field zero even if it is zero
initially. That is, spatial, δx, and temporal, δt, discretisation steps have an impact on the
equation [268]:

∂/∂t(∇ ·B) = 0 +O[(∆x)m, (∆t)n]
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where, m,n >= 1. This itself can lead to nonphysical effects and instabilities in MHD
equations. To compensate for numerical errors the hyperbolic divergence cleaning method
introduces hyperbolic correction or divergence wave which is included in the induction
and ∇ ·B = 0 equations (i.e., by providing additional scalar field).

The Constrained Transport (CT) technique is another method for maintaining the
divergence-free magnetic field, although more strictly, to machine round-off error pre-
cision. CT uses staggered mesh for defining the magnetic field components at the cell
interfaces while electric fields are defined at the zone edges [269] (see e.g., Figure 4.1 in
Ref. [268]). In our future works, we plan to employ this method for the projects presented
in this thesis in order to see how/if our results are altered. Meanwhile, in Sections 6.7
and 7.5 we comment on possible uncertainties in our results from the divergence cleaning
algorithm.

In our works, we additionally used another feature of the Enzo code, namely the dual
energy formalism (DEF). In cosmological simulations, one often encounters the problem
when thermal energy is a small fraction of the kinetic energy, e.g., in supersonic flows.
This leads to the disastrous numerical situation when thermal pressure (proportional to
the total energy subtracted a kinetic energy, ∝ E − Ek) is a difference between two large
numbers. Even though this occurs only in some regions where pressure is small we still
used DEF method to ensure the correct temperature profile in such regions. In that case,
Enzo code will solve the internal energy equation separately for updating the temperature
profile of those regions. The code will exclude the contribution of this internal energy in
gas dynamics.

5.3 Initial conditions
As already mentioned in Chapter 2, according to the ΛCDM paradigm structure formation
is driven by initial tiny perturbations in the density field that must be also reflected in the
initial conditions of our simulations. We generate initial conditions by the inits program
which is provided by Enzo collaboration. inits sets up desired volume of particle-mesh
grid and generates initial positions and velocities of dark matter particles as well as gas
density and velocity distribution according to the adopted matter power spectrum (using
periodic boundary conditions). In both studies, we use an initial matter power spectrum
P (k) which results from a primordial, scale-invariant spectrum Pi(k) by taking into ac-
count the (linear) evolution of post-inflationary perturbations. Evolution of these pertur-
bations is captured by the transfer function T (k). T (k) is related to the matter power
spectrum through equation:

P (k) = T 2(k)Pi(k) (5.11)

where Pi(k) ∝ kn with n = 1 (so-called Harisson-Zeldovich spectrum) is the spectrum
predicted by the inflationary theory. In the early Universe, each species of particles are
expected to have a separate transfer function. However, since in the post-recombination
Universe baryons quickly become pressureless, they follow cold dark matter perturbations
and have the same transfer function (see e.g., Ref. [270]). In our works, we used the
Eisenstein & Hu [270] transfer function which includes case of one massive neutrino. We
assumed ΛCDM cosmology (as in Ref. [122]) with the following parameters: h = 0.674,
Ωm = 0.315, Ωb = 0.0493, ΩΛ = 0.685, and σ8 = 0.807. Here σ8 is the parameter
measuring the amplitude of (linear) power spectrum on the scale of 8h−1Mpc. The main
influence on the power spectrum comes from Ωm and h parametres while σ8 affects power
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spectrum in a certain wavenumber range.
Once the initial matter power spectrum is provided, inits calculates dark matter and

gas density fluctuations from the corresponding Gaussian random fields (see Ref. [271]
for more details). Particle positions and velocities are then calculated from the Zel’dovich
approximate (i.e., based on the first-order Lagrangian perturbation theory).

We note that the adopted matter power spectrum neglects any effects from PMFs.
PMFs are expected to affect the clustering of matter on intermediate and small scales,
smaller than galaxy cluster scales [71, 73, 171, 272, 273]. In particular, PMFs provide
a source term in Equation (2.11) and produce gravitational instabilities, scalar (density),
vector (vorticity), and tensor (gravitational waves) modes. The effects on the initial matter
power spectrum have been discussed in the pioneering works [68–70]. Although, all these
studies have neglected the PMF decay effects, assuming a frozen-in magnetic field with
an unchanged spectral profile from the moment of generation until recombination. In
our projects, we neglect PMF effects on the matter power spectrum while emulating the
spectrum of the field according to the magnetogenesis and pre-recombination evolution
scenarios. Thus, we do not expect that the presence of PMF-induced density perturbations
in the early Universe will have a significant impact on the results presented in Chapters 6
and 7.

Magnetic initial conditions for our projects are generated with the PENCIL CODE

and are described in Chapters 6 and 7 for the cosmic web and galaxy cluster studies,
respectively. In brief, our magnetic initial conditions are divided into inflationary and
phase-transitional-alike ones, i.e., resembling the characteristics of inflation- and phase-
transition-generated PMFs. For each scenario, we study two different initial conditions
differing from each other by magnetic energy power spectrum (while having the same
total magnetic energy).

5.4 Adaptive Mesh Refinement (AMR)
The modeling of nonlinear structure formation should ideally encompass the formation
and evolution of (proto-) stars and galaxies, and clusters of galaxies into filamentary struc-
tures, thus, requiring to resolve scales spanning from a few solar radii to hundreds of
Mpc. One might strive to use a large number of grid cells and particles (e.g., in the
hybrid codes, such as the Enzo code) to accurately model the processes inside the col-
lapsed structures in large cosmological boxes. At the same time, care must be taken not
to waste computational resources on the modelling of low-density regions, such as e.g.,
cosmic voids where the lower resolution will still suffice. In the Lagrangian codes, e.g.,
Smooth Particle Hydrodynamics (SPH) method [274–276] naturally leads to high res-
olution in high-density/collapsed regions. However, drawbacks of this method are the
poorer resolution in the low-density regions compared to the Eulerian, grid-based codes
as well as the fixed particle mass and poorer shock-capturing capabilities. The structured
Adaptive Mesh Refinement (AMR, or also referred to as SAMR) technique, introduced
by Berger and Collela [277], provides a means for adaptively increasing the resolution
in the regions of interest, such as e.g., the gravitationally collapsing objects. Thus, this
method complements the grid-based codes by providing improved spatial (and temporal)
resolution where it is required [261, 278, 279].

AMR technique used by Enzo is well documented in method papers (e.g., Ref. [113]).
Here, we shortly describe the main idea and refinement criteria offered by the code. The
basic principle of AMR lies in constructing the hierarchy of grids within the targeted
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Figure 5.1: Representation of AMR structure: 2D grid structure where certain cells, trig-
gered by the refinement criterion, are subdivided into smaller-size cells. The tree structure
on the bottom panel illustrates the AMR hierarchy. Figure credit: Ref. [25].

regions. The target region can be a small part of the whole simulating domain which
consists of uniformly sampled grid points, referred to as the root grid. As the AMR
is activated, triggered by certain refinement criterion (see below), subgrids are built on
the root grid. Each subgrid results from dividing the cells of its parent, coarser grid
by an integer number (typically used 2 or 4) so that the resolution of this child grid is
increased by the same factor (see Figure 5.1 for illustration of AMR technique). The
hierarchy advancement process (i.e., the process of building the subgrids) continues until
the refinement criterion is met; see section 3 in Ref. [113] for more details. An important
parameter during the grid reconstruction process is the time step by which the grid is
advanced. This time step itself satisfies various stability and accuracy criteria which is
also documented in Ref. [113] (see Section 9).

AMR technique is of particular importance for cosmological applications since it en-
ables us to define the refinement criteria that best suit the problem being simulated. The
Enzo code provides various options for the refinement criteria that are necessary for ac-
tivating the AMR. Examples of such criteria are flagging of computational domain cells
according to the gas and dark matter density thresholds, pressure and velocity gradients,
and second derivatives of fields. In the latter case, a cell is refined when the ratio of the
second and first derivatives of the user-provided field exceeds a certain threshold. Refine-

67



ment according to pressure and velocity jumps is used for identifying the shocks in the
simulations. This latter criterion is based on the pressure and velocity difference across
adjacent cells. Several works have studied the refinement strategies and their suitability
for resolving the turbulence in galaxy clusters (see e.g., Refs. [280–282]). Studying such
refinement techniques was also important for our galaxy-cluster study. In Section 7.2 we
describe the strategy employed in our “zoom-in” simulations of galaxy clusters. Cosmo-
logical zoom-in simulations are good examples of achieving high resolution in individual
objects within the cosmic web using AMR. Such simulations usually comprise two sets
of simulations: one where the region of interest is identified and the other one where this
region is studied with higher resolution and tailored AMR refinement factors.
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Chapter 6

PMFs during large-scale structure
formation

In this chapter, we are interested in the global properties of PMFs and their signatures on
the RM; we describe our results of the cosmic web study based on our publication:

• Mtchedlidze, S., Domı́nguez-Fernández, P., Du, X., Brandenburg, A., Kahniashvili,
T., O’Sullivan, S., Schmidt, W., Brüggen, M., “Evolution of Primordial Magnetic
Fields during Large-scale Structure Formation”, ApJ 929, 127 (2022).

I confirm the sole contribution to the paper and responsibility for the following: par-
ticipation in the study conception and design, running of simulations and data analysis,
interpretation of the results and the draft manuscript preparation.
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6.1 Physical model
We first start by discussing the physical motivation for studying the chosen primordial
magnetogenesis models and statistical characteristics for these scenarios. The statistical
characteristics of each PMF are determined by the generation mechanism. First, in the
case of a uniform, homogeneous PMF (the Mukohyama model) that is generated during
the inflationary stage, the correlation length λB is undetermined (well above the horizon
scale at the generation moment). Indeed, such a PMF might be described as a monochro-
matic field at k = 0. Such a field has zero helicity, and no spectrum can be associated
to it1 (i.e., the realisation in Fourier space is a Dirac delta function). If a statistically
homogeneous field has been generated through some mechanism after inflation, its peak
scale LEB(k) and therefore its correlation length must be limited by the size of the Hubble
horizon at the moment of generation, H−1

⋆ . In this case, we can still use a monochromatic
field at a nonzero wavenumber kpeak. Correspondingly, the PMF in Fourier space will be
approximated by a Dirac delta function as δ(k − kpeak). This is a common description
when referring to the lower limits of the magnetic field through blazar spectra observa-
tions [100]. The energy density associated with a homogeneous PMF is simply given
through B2/(8π), regardless of whether the field has finite or infinite correlation length.

In the case of causally generated magnetic fields after inflation, under the standard
description of a PMF generated during the electroweak phase transitions through bubble
collisions, the physical correlation length is determined by the bubble length scale. A
length scale of around one-hundredth of the Hubble horizon scale is commonly assumed,
with 100 bubbles within a linear Hubble scale. For the QCD phase transitions, the bubble
size is commonly assumed to be one-sixth of the Hubble scale (see e.g., Ref. [283]).

We focused on studying two subcases of inflationary and phase-transitional magneto-
genesis scenarios. In the inflationary case, we study (i) a uniform, homogeneous and (ii)
a stochastic, scale-invariant initial magnetic field (see Section 6.2.1). In the latter case,
we take into account the development of a turbulent forward cascade in the radiation-
dominated epoch [284]. That is, the inflation-generated, scale-invariant k−1 spectra result
in a Kolmogorov k−5/3 spectrum by the end of recombination (see Figure 4.3). In the
phase-transitional case, we study (iii) a helical and (iv) a nonhelical initial magnetic field.
These cases correspond to a turbulent, causally generated magnetic field with a charac-
teristic scale of ∼ 2.6h−1Mpc and ∼ 1.26h−1Mpc, respectively. Toward larger scales,
the magnetic energy spectrum is proportional to k4 (Batchelor spectrum; see Section 4.2).
On smaller scales, a turbulent magnetic cascade with an energy spectrum proportional to
k−5/3 (Kolmogorov spectrum) is expected. These spectra are obtained quite generically
even when turbulence is driven monochromatically at one wavenumber [285].

As we discussed in Section 4.3, phase transitional fully helical (non-helical) magnetic
fields are expected to reach a (comoving) magnetic field strength of 0.3 nG (3×10−3 nG)
at a scale of 30 kpc (0.3 kpc) at the epoch of recombination (see Figure 4.2). Our selected
initial characteristic scales for models (iii) and (iv) are larger than these predictions due
to our limited resolution of 132 h−1 kpc. It is therefore important to stress that our initial
stochastic, helical and nonhelical spectra are intended only to emulate the shape that is ex-

1It is important to emphasise that such magnetic fields are qualitatively different from
the small-scale fields that are obtained by tangling of a uniform (imposed) one. This is
because, in periodic domains, such a field constitutes a separate component that can never
change. This has dramatic consequences for the evolution of the magnetic field on all
smaller scales; see Ref. [216] for examples.
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Scenario Model Norm. Sim. ID ⟨B2
0⟩ ⟨B0⟩ kpeak LEB(k)

(nG) (nG)2 (nG) hMpc−1 h−1Mpc

Inflationary

(i) Uniform
0.1 u01 0.0072 0.085 — —
0.5 u05 0.180 0.390 — —
1 u1 0.719 0.804 — —

(ii) Scale-invariant
0.1 s01 0.0072 0.079 0.02 45
0.5 s05 0.180 0.395 0.02 45
1 s1 0.719 0.790 0.02 45

Phase-transitional

(iii) Helical
0.1 h01 0.0072 0.080 0.4 2.6
0.5 h05 0.180 0.402 0.4 2.6
1 h1 0.719 0.781 0.4 2.6

(iv) Nonhelical
0.1 nh01 0.0072 0.085 0.8 1.26
0.5 nh05 0.180 0.424 0.8 1.26
1 nh1 0.719 0.848 0.8 1.26

Table 6.1: Initial conditions for the magnetic field; the characteristic wavenumber and
scale of the magnetic spectra is denoted by kpeak and LEB(k) accordingly, and ⟨B2

0⟩
and ⟨B0⟩ are the mean of the initial magnetic field energy and the initial magnetic field
strength respectively.

pected theoretically. In the helical case, we selected a correlation length that is larger than
the one in the nonhelical scenario since this is also expected from theory as a consequence
of the inverse cascade that helical fields undergo in the radiation-dominated epoch.

6.2 Simulations
We simulated (67.7h−1Mpc)3 comoving volume with static uniform grid of 5123 cells
with 5123 DM particles, each of mass mDM = 2.53 × 108M⊙. Our grid resolution is
132 h−1 kpc. The chosen box size is of the same order as the scales where the Universe
is assumed to be homogeneous and isotropic. Therefore, it is suitable for studying the
global properties of the PMF evolution in the cosmic web. The resolution, on the other
hand, has been chosen to reduce the computational resources since we are not aiming at
resolving turbulence amplification in galaxy clusters; although, this resolution still allows
us to resolve the amplification of the field due to adiabatic dynamics. We note that our
setup is a first step in describing the evolution of more realistic PMFs than what was done
previously (using the uniform seed field only; see, e.g., Refs. [252, 286]). The ΛCDM
cosmology parameters that we use are as follows, h = 0.674, Ωm = 0.315, Ωb = 0.0493,
ΩΛ = 0.685, and σ8 = 0.807.

6.2.1 Initial conditions
We consider four different scenarios for the initial magnetic seed field (see Table 6.2 and
Section 6.1 for the validity of the models):

(i) Uniform (spatially homogeneous) field: we study an initial seed magnetic field with
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Figure 6.1: The initial magnetic power spectra for the stochastic setups.

a constant strength across the whole computational domain. The magnetic field is
directed along the diagonal. This case corresponds to the Mukohyama model [56].

(ii) Scale-invariant field: this is a setup for a stochastic, statistically homogeneous PMF
with no helicity. This case corresponds to an inflationary scenario.2

(iii) Nonhelical field: a stochastic, phase-transitional PMF with no helicity.

(iv) Helical field: the same stochastic setup as (iii), but with helicity.

As we noted in Section 4.3, any power-law decay/growth of the magnetic field and its cor-
relation length on small scales is expected to virtually freeze at the end of the radiation-
dominated epoch [76], while the large-scale evolution of PMFs during dark ages as well
as after the reionisation epoch is primarily dominated by the expansion of the Universe. 3

Therefore, we initialise the simulation at z = 50 without loss of generality since no sig-
nificant changes at the cosmological scales of interest for this work are expected between
the recombination epoch and z = 50 redshift.

The seed magnetic field conditions (ii)–(iv) were preproduced with the PENCIL CODE

[288]. These were then used as initial conditions for the Enzo code. We normalised the
mean magnetic energy density in all four cases (at initial redshift z = 50) to the same
value corresponding to a mean (effective) magnetic field strength. The reader is referred to
Appendix 9.1 for a detailed description of the generation of the initial magnetic conditions
(ii)–(iv), including the setup for the helical field, as well as their normalisation.

In Section 6.3, we discuss the results of three different normalisations: 0.1 nG, 0.5 nG,
and 1 nG (see Table 6.2) for the uniform, scale-invariant, helical, and nonhelical models,

2We note that we call this model “scale-invariant” even though it has a turbulent spec-
tra with k−5/3 scaling; see Section 6.1.

3See, however, Ref. [287], who recently claimed a faster decay of PMFs than expected
by the expansion of the Universe.
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model Normalisation ⟨B⟩z=0.02

(nG) (nG)

0.1 0.15
Uniform 0.5 0.69

1 1.29
0.1 0.15

Scale-invariant 0.5 0.69
1 1.27
0.1 0.09

Helical 0.5 0.42
1 0.79
0.1 0.08

Nonhelical 0.5 0.39
1 0.74

Table 6.2: Mean of the magnetic field strength at z = 0.02 achieved for all our models
(see also Table 6.2). Note that the mean value is computed in the whole cosmological
box.

respectively. In the remainder of this chapter, we only discuss the results of the 1 nG
normalisation (which is below the upper limit from the CMB bounds;see Ref. [21]).

We show the initial magnetic power spectra for the stochastic setups considering a
1 nG normalisation in Figure 6.1. In our work, as already mentioned in Chapter 5, we
consider the MHD decay effects while neglecting the initial matter power spectrum mod-
ifications. The self-consistent derivation of the initial linear magnetised perturbation is
beyond the scope of the project. Recent numerical works [73, 74] have shown that PMF
effects on matter power spectrum are mainly at the high end tail of the spectrum (small
scales). Such effects should not significantly impact the results presented in this work
since our initial magnetic conditions are better suited for studying the evolution of mag-
netic fields on larger scales and higher-mass haloes. The main novelty of our approach
lies in the fact that we adopt a magnetic field from a self-consistent turbulence simula-
tion where the field displays an approximately self-similar decay. In particular, the field
contains coherent structures over all length scales.

6.3 Dependence on the magnetic field strength
We start our analysis by studying the effects of the initial magnetic field strength on the
final distribution of magnetic fields in different cosmic environments. In this section, we
discuss the results from three different initial magnetic strengths: 0.1 nG, 0.5 nG, and 1 nG
(see Table 6.2).

In Figure 6.2, we show the median of the magnetic field and temperature distributions
with respect to the gas density distribution for the different models at z = 0.02. In the
same figure we also show a 2D histogram, i.e., we overplot the gas mass (for the helical
case) falling into each bin. The distributions differ according to the different regions of
the cosmic web, i.e., voids, filaments, bridges, and clusters. We identified bridges in our
simulations by visual inspection. The typical range of the overdensity in this environment
is given in Figure 6.2. Notably, we define bridges in a way so that they also include the
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outskirts of galaxy clusters. It is important to distinguish this environment from large-
scale filaments, because currently bridges are the most promising way to observationally
detect large-scale warm–hot gas filaments (see e.g., [2, 289]).

The resulting differences between magnetic seedings in each cosmic environment ob-
served in Figure 6.2 can be summarised as follows:

Clusters. As we can see from the top panel of Figure 6.2 the variation of the ini-
tial magnetic field strength does not affect the normalised4 magnetic field distri-
butions in galaxy clusters; although each model leads to higher final mean values
for the higher initial magnetic field realisation (see Table 6.3). The highest me-
dian values are observed from the inflationary seedings where the uniform seeding
shows a magnetic field strength twice as large as the scale-invariant model. On the
other hand, the phase-transitional seedings show the lowest magnetic field strengths
within these regions. In particular, the nonhelical case is the model that shows the
lowest amplification in galaxy clusters. Interestingly, different seed magnetic fields,
as well as the variation of the seed field strength, do not alter the temperature dis-
tribution in these regions (see for comparison Ref. [253]).
Bridges. Similarly to clusters, the highest magnetic fields in these regions are
seeded by the inflationary scenarios. However, the differences in the magnitude
of the uniform and scale-invariant cases are reduced in comparison to cluster re-
gions, while for phase-transitional models they are slightly enlarged. Finally, the
temperature distribution is again unaffected by different primordial scenarios.
Filaments. The different initial magnetic field strengths do not alter the normalised
magnetic field or temperature trends in this region. However, the final distribu-
tion of the magnetic field is affected by the initial topology of the seed field. The
seed fields with initial larger characteristic scales lead to larger magnetisation lev-
els in filaments. The uniform and scale-invariant cases show amplification due
to adiabatic contraction. In the helical and nonhelical models, where the mag-
netic power of the large-scale modes is smaller (see Figure 6.1), the amplification
due to adiabatic compression is less efficient. Previous work that focused on fil-
aments (see e.g., [286]), have argued that the magnetic amplification within these
regions is less dependent on resolution and possible dynamo action even at high
Reynolds numbers. This can happen because compression are expected to be dom-
inant in filaments and suppress small-scale twisting of magnetic structures. Finally,
it seems that the differences between the inflationary and phase-transitional models
are not reflected in the temperature distribution. Similar trends have been found in
Ref. [290], where the different seeding scenarios show significant imprints on fi-
nal magnetic field distributions but only mild differences in the temperature trends
(pronounced mostly at high densities).
Voids. These regions are assumed to be most promising for discriminating among
different magnetogenesis scenarios (see e.g., Refs. [51, 291]). We see that differ-
ences between the models in the temperature profiles are revealed only for the
higher initial magnetic field realisations (i.e., only for the 0.5 nG and 1 nG initial
magnetic field strengths). However, the differences between the uniform and scale-
invariant models are negligible, while the helical and nonhelical cases show the
largest discrepancies. In addition, we see that stochastic (scale-invariant, helical,
or nonhelical) seedings lead to the highest magnetic field strengths, and conse-
quently highest temperatures within these regions. This highlights the fact that

4Normalised by the corresponding mean field value of the model; see Table 6.3.

74



Figure 6.2: Dependence of the median magnetic field and temperature on density for
all of our simulations. The x-axis shows the gas density normalized by the mean density
field. The solid, dashed, and dashed-dotted lines correspond to the 1 nG, 0.5 nG, and
0.1 nG, normalizations, respectively. The black solid lines show the expected density
scaling of the magnetic field strength based on the adiabatic contraction only (∝ ρ2/3).
The additional color coding (black–white palette) shows the mass of gas (for the helical
case) falling into each bin. Vertical dotted lines indicate the characteristic densities in
filaments and bridges.
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Figure 6.3: Contoured slices through the centre of the simulated box at z = 0.02. The top,
middle, and bottom panels show the magnetic field, density, and temperature slices corre-
spondingly. The overplotted contour lines mark the regions with a certain field strength,
and the range of the field values are set according to the minimum and maximum of the
annotated fields.

initial stochastic turbulent motions could cause local heating. Similar trends were
obtained in Ref. [253] where only models with an initial power-law magnetic spec-
trum were considered. Therefore, initial magnetic fluctuations could be important
for the local heating. In particular, PMFs can heat up the hydrogen and helium
in the IGM by, for example, decaying turbulence (see e.g., Refs [272, 292]) and
this can be reflected in the 21 cm signal [293–295]. Strong absorption spectra
of the global signal detected by the EDGES experiment suggest that IGM was
colder than expected from the standard cosmological scenario [296]. In the recent
work of Ref. [287] it has been shown that heating of IGM due to PMFs along with
DM–baryon interactions [297] can be used for constraining the strength of PMFs.
Hence, the observed temperature differences in Figure 6.2 could be used to probe
the strengths of both inflationary as well as phase-transitional models in cosmic
voids.

We can conclude that the amplification of the initial magnetic field due to adiabatic
contraction is subdominant in the stochastic turbulent cases at our resolution. Conversely,
the uniform model can be well fitted by the simple ρ2/3 relation (expected from adiabatic
contraction only) in the filaments and low-density regions (see also Appendix 9.2.1). As
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expected, the differences between models become larger at the galaxy-cluster scales due
to our limited resolution. While we expect that these differences should persist (although
to a lesser degree) with higher resolution, only future work focusing on these regions can
demonstrate it.

In the next sections of this chapter we will focus on the PMF scenarios with an initial
1 nG normalisation (see Table 6.2). The resulting mean magnetic field strengths from this
normalisation are more in agreement with current observations; see, e.g., Refs. [298,299]
for the 0.1–1µG magnetic field strengths found in galaxy clusters based on the inverse
Compton measurements from radio haloes, and [35] for the strengths as high as 1–7µG
based on the likelihood analysis of Faraday rotation measures.

6.4 General properties
We show slices of the final (z = 0.02) magnetic field, density, and temperature in the
67.7 h−1cMpc box in Figure 6.3. As we can observe in the top panels of Figure 6.3, the
stochastic seeding fills the voids more efficiently than the uniform case, while the uni-
form and scale-invariant magnetic seedings show the largest spatial correlation with the
filamentary structures. This is not surprising because the initial magnetic power spectrum
of the uniform seeding does not have a characteristic scale, and the characteristic scale
of the scale-invariant spectrum is larger than that of the helical and nonhelical cases. We
also observe that nonhelical initial magnetic fields tend to create more substructures than
helical ones. This is an expected trend in MHD simulations of helically and nonhelically
driven turbulence because of the magnetic helicity (and thereby magnetic energy) trans-
fer to large scales. In a recent study of turbulent dynamos driven by isotropic forcing in
isothermal MHD [300], helical and nonhelical cases were compared. The authors found
that an initially Gaussian magnetic field (with a magnetic energy spectrum ∝ k2) devel-
ops a magnetic energy spectrum with a characteristic scale (peak spectrum) in both cases.
Nonetheless, the helical case attains a large-scale nature (more power at k smaller than
the peak scale), while the nonhelical case is still characterised by a small-scale structure.

The density (middle row in Figure 6.3) and temperature (bottom row in Figure 6.3)
contours show a spatial correspondence between the densest structures (∼ 10−28 g cm−3)
and the highest temperatures (∼ 107K) in all four cases. The low-density regions (∼
10−32–10−31 g cm−3) enclose higher temperatures in the nonhelical case than in all the
other cases. This is a direct consequence of having smaller magnetic substructures in the
nonhelical model at the initial and final redshifts, which leads to extra turbulent dissipation
in the voids region.

In Figure 6.4 we show the volumetric PDFs of the magnetic field for all our models.
The PDFs are shown for two epochs: z = 40 (dotted lines) and z = 0.02 (solid lines).
The final PDFs show a broadening in all the models. The low-end tail of the distribution
(values below 6 × 10−10G) is very similar for all the models. By contrast, the high-end
tail of the distribution (values above 4 × 10−9G) differs in the inflationary and phase-
transitional models. Both inflationary models produce higher magnetic field values than
the phase-transitional models. It should also be noted that the PDFs for both scenarios
deviate from the Gaussian trend (more evidently seen for the inflationary models) and
the peak of the distribution in the inflationary case is shifted toward lower values. For
example, in the uniform case, the peak is shifted from 8 × 10−10G to 2 × 10−10G. We
can see that the main differences in the distributions come from the regions where the
magnetic field strength is of the order of 4× 10−9–5× 10−7G.
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Figure 6.4: PDFs for the different magnetic seedings at z = 40 (dotted lines) and z = 0.02
(solid lines).

Finally, the evolution of thermal, kinetic, and magnetic energies over a time span of
13.5Gyr is shown in Figure 6.5. The thermal ET , kinetic EK , and magnetic EB energies
are defined as ∫

nkBTdV,

∫
ρv2

2
dV,

∫
B2

8π
dV, (6.1)

where n is the gas number density, v the velocity, kB the Boltzmann constant, and V
the volume. The growth of kinetic and thermal energies achieved in all four models is of
the order of ∼ 105 by the end of the simulation. The thermal energies show variations
between the models at earlier redshifts (see z ≳ 6, where stochastic phase-transitional
cases show larger thermal energies). This indicates that more dissipative processes are
present in these scenarios. Although we find that the extra heating shown in Figure 6.5
is independent of the Riemann solver, we cannot rule out a numerical origin. However,
we also see that the thermal-energy evolution converges to the hydrodynamic case for
redshifts z ≲ 6 (see also Appendix 9.2.2). For this reason, it is unlikely that our analysis
at lower redshifts is affected by the initial transient. Moreover, spurious heating will be
suppressed by radiative cooling in a more advanced model.

The final thermal and kinetic energies (for z ≳ 6) show no difference between the
four models. However, differences in the magnetic energies arise at a redshift as early as
z ∼ 40. At z = 0.02 it is evident that the magnetic energy in the inflationary models is
roughly one order of magnitude larger than the magnetic energy in the phase-transitional
models. Overall, the magnetic energy growth throughout the evolution is observed to be
by a factor of ∼ 10 in the uniform and scale-invariant cases, and by a factor of ∼ 2–4 in
the nonhelical and helical cases, respectively.

6.5 Evolution of magnetic power spectra
In this section, we focus on the properties of the magnetic power spectra (Equation (3.36))
for the different primordial magnetic seedings. We remind a reader that as we have seen in
Section 4.2 pre-recombination evolution of magnetic energy spectra is affected by turbu-
lence; the final topology of the field at the recombination epoch shows dependence on the
initial conditions as well as on the nature of turbulence. In this section, we will see that
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Figure 6.5: Evolution of magnetic, thermal, and kinetic energies for the different magnetic
seedings. The solid, dotted, dashed, and dashed-dotted lines correspond to uniform, scale-
invariant, helical, and nonhelical cases, respectively.

Figure 6.6: Redshift evolution of magnetic power spectra. From left to right: the uniform,
scale-invariant, helical, and nonhelical seedings.
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field topology after structure formation (at the current epoch) would still differ according
to different magnetogenesis scenarios.

In Figure 6.6 we show the evolution of the magnetic power spectra of the inflation-
ary (uniform and scale-invariant) and phase-transitional (helical and nonhelical) cases.
Notable features of this figure are as follows:

a) Inflationary seeding. The magnetic power spectrum in the uniform and scale-
invariant cases reaches higher values at the final redshift than that of the cases
with helical and nonhelical seeding. In particular, the uniform seeding shows how
the magnetic energy builds up at all scales in a similar fashion from early redshift
(z = 40). This emphasises how the magnetic field follows the growth of the density
perturbations. On the other hand, the amplitude of the power spectrum in the scale-
invariant case starts increasing only from z = 10, but the final distribution achieved
in this case is similar to that in the case of the uniform seeding.
The obtained trends for these two subcases of an inflationary scenario seem to be
different from the results of a recent study by Ref. [216], where the MHD evo-
lution with imposed and scale-invariant initial fields has been compared in the
radiation-dominated epoch. They showed that even if small-scale turbulent forc-
ing is applied, the uniform (imposed) field always decays faster than the field with
the scale-invariant spectrum. Subsequent studies revealed that the apparent differ-
ence between the two types of simulations is caused by the fact that in the present
cosmological simulations there is always a large-scale velocity field, which was not
the case in the simulations of Ref. [216]. However, repeating their simulations with
a large-scale velocity field characterised by an initial k−2 spectrum produces the
rapid growth of the magnetic field also on large scales; see Appendix 9.2.3, where
we demonstrate the tangling of a homogeneous magnetic field by an initial turbu-
lent velocity field with a k−2 spectrum. Thus, there is no conflict between these two
types of simulations if comparable initial velocity fields are used in both cases.

b) Phase-transitional seeding. The initial characteristic scale LEB(k) in these cases
makes the magnetic power spectra evolve in a very different way. Overall, the total
amplitude is smaller than in the inflationary cases, as can be observed in Figure 6.6.
Nevertheless, the most interesting result is how the characteristic scale defines the
evolution at large and small scales. On large scales (k ≲ 1hMpc−1), the magnetic
field growth is moderate. The helical seeding shows stronger magnetic growth than
the nonhelical seeding. This happens because in the former case the initial magnetic
perturbations are correlated on larger scales (see Figure 6.1). It is also possible
that helicity leads to larger power on these scales. This is an expected trend in
MHD simulations of decaying turbulence where the larger growth is observed for
large length scales due to the inverse transfer from small to larger scales; see, e.g.,
Ref. [76] and Ref. [301]. On the other hand, scales smaller than the characteristic
scale, i.e., k ≳ 0.4hMpc−1 for the helical case and k ≳ 0.9hMpc−1 for the
nonhelical case, respectively, can grow and reach magnetic levels comparable to the
inflationary cases. Additionally, we observe that there is a shift of the peak spectra
toward smaller scales (at z ∼ 5) in both cases as more substructure is building up on
galaxy-cluster scales (∼ 1Mpc).5 Finally, we also observe magnetic power decay
on the peak scales and on the smallest scales at early redshifts (z > 10) in both the

5It should be noted that after the first shift of the peak, the peak again gradually moves
from smaller to larger scales (from z = 3); this behaviour is similar to the aforementioned
inverse cascade. This trend is more evident for the nonhelical case.
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Figure 6.7: Magnetic power spectra for the uniform and stochastic cases. The dashed-
dotted lines show the corresponding power spectra at the initial redshift (z = 50) and the
solid lines at the final, z = 0 redshift.

helical and nonhelical cases. In these cases, most of the magnetic energy is initially
contained toward small scales while the matter (and density) power spectrum has
most of its power contained on larger scales. This limits, for example, the magnetic
energy growth in the two cases at early redshifts (see also the discussion at the end
of this section).

We compare the initial and final magnetic power spectra with the corresponding linear
mass scales for all the models in Figure 6.7. Note that these mass scales should not be
interpreted as the masses of the massive objects (e.g., galaxy clusters) since they can only
be accepted as an estimation of masses at certain radii that are still in the linear regime
(i.e., these would be the largest scales in our simulations, k ≲ 0.5hMpc−1). The dif-
ference between the amplitudes of the inflationary and phase-transitional magnetic power
spectra is more evident at small wavenumbers. As we mentioned above, in Figure 6.7
the spectra peak of the two stochastic seedings are shifted toward larger wavenumbers.
In addition, we see that different phase-transitional seedings are expected to be harder to
distinguish at masses M ≲ 1010M⊙, whereas the magnetisation at masses M ≳ 1012M⊙
is distinguishable for the inflationary and phase-transitional models. The reader may note
that the behaviour of the magnetic amplification at different scales is strongly affected by
the spectrum peak (or by the coherence scale) at the initial redshift. The role of the peak
position will be considered in future work.

The differences between the uniform and scale-invariant spectra for all mass scales
is remarkably small. It is only at 3 × 1014M⊙ that the amplitude of the scale-invariant
spectra is higher than that of the uniform model. Overall, we discern these differences in
the amplitude of the power spectrum between the inflationary and phase-transition models
to be increased on larger scales (M ≳ 2 × 1010M⊙) reaching order of 105 difference on
mass scales ≳ 1014M⊙.
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Figure 6.8: Evolution of magnetic correlation length obtained from different magnetic
seeding. Gray points show the correlation length computed from the density power spec-
trum.

In a collapsing magnetised region, field amplification mainly occurs via adiabatic con-
traction. However, if that region contains a randomly oriented magnetic field, there are
two additional things to consider: 1) the cancellation of opposite-polarity fields can reduce
the magnetic flux, and/or 2) there could be extra field amplification by turbulent dynamo
if the growth rate is faster than the gravitational compression rate (see also Ref. [302] and
Appendix A in Ref. [303] for a comparison between uniform and stochastic models in
idealised MHD simulations). In our study, shocks that originate during structure forma-
tion can additionally affect the magnetic amplification since they can destroy coherence
small-scale structures. This can also contribute to decreasing power of the peak scales of
helical and nonhelical cases at early redshifts. All these effects explain why in the helical
and nonhelical cases we see less efficient amplification on both small and large scales (see
Figure 6.6). While all our four cases are affected by the not-well-resolved turbulent mo-
tions within the collapsing regions of the cosmic web, the lower magnetic power increase
observed in the two phase-transitional cases could be partly attributed to field cancellation
(see also discussion below on the correlation length). On the other hand, the stochastic,
scale-invariant case develops a nonzero mean field (due to an initial larger correlation
length in this case) which makes its evolution very similar to that of the uniform case
and less subject to field-cancellation effects. Hence, we observe a larger magnetic field
amplification in this case.

Finally, we show in Figure 6.8 the evolution of the magnetic correlation length (Equa-
tion (3.37)). It should also be emphasised that for inflationary, uniform magnetic fields,
the correlation length at the initial redshift can be ill-defined, because the numerator of
Equation (3.37) diverges for k → 0, so this point needs to be excluded. For our nearly
scale-invariant field, however, the spectral energy goes to zero for k → 0, and thus the
integral does not diverge; see [163] for details.

In all four models, we see an increasing trend at initial redshifts which mostly follows
the evolution of the density correlation length. In unigrid Eulerian cosmological simu-
lations, the density power spectrum tends to be more damped at small scales since the
gravity forces are smoothed at the grid scale, as noted in Ref. [304]. This slower growth
of the smallest scales leads to the increase of the magnetic and density correlation length
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Figure 6.9: Faraday rotation maps from the simulated cosmic web at z = 0.02. From top
to bottom: uniform, scale-invariant, helical, and nonhelical cases respectively. The color
bar shows values in [rad/m2] and it is linearly scaled in the range [−0.04, 0, 04].

at z > 10 in Figure 6.8.
The correlation-length evolution is followed by a decrease (z ≲ 10) in both density

and magnetic correlation lengths for all four models. This results from the small-scale
modes entering the nonlinear regime of the growth of density perturbations. At this stage,
power is transferred from large to small scales. A final increase of magnetic correlation
length is only noticeable in the uniform seeding case at z ≲ 1.75. The density correla-
tion length shows a similar trend as the magnetic correlation length in the uniform case,
although it shows a slower increase. It should be noted that the latter trend could also
be affected by the damped growth of perturbations at small scales because of our limited
resolution.

Finally, we see that the correlation length in the uniform case is about twice as large as
in the helical and nonhelical cases, and the scale-invariant model shows the largest final
correlation length (∼ 4 h−1cMpc). This is in line with our previous discussion on the
discrepancies in magnetic amplification of inflationary and phase-transitional cases.

6.6 Faraday rotation measures
We discussed in Section 1.2.1 that one of the main observational tool for the large-scale
magnetic fields is the RM. The total observed RM includes contributions from various
magnetised regions along the LOS (see Equation (1.9)), including contribution from the
magnetised regions of our own Galaxy. In the recent years, effort has been put into con-
straining the extragalactic RM, RMIGM (see e.g., Refs. [14, 15, 305, 306]). Such observa-
tions are especially important for constraining the magnetogenesis scenarios.

In Figure 6.9 we show the RM maps of the simulated cosmic web at z = 0.02 for
different primordial seeding cases. In this section, we use physical quantities, such as
physical magnetic field strength, electron number density, and physical length scales. We
also note that in our calculation we did not include the Galactic contribution [307]. These
maps have been obtained by integrating Equation (1.8) along the x-axis. We checked that
the selected axis of projection does not produce differences in the results described in this
section. We observe significant differences in the RM maps for the different primordial
seeding models. First, we observe more coherent structures in the uniform and scale-
invariant seeding cases than in the helical and nonhelical cases. Second, the RM values
are highest for the inflationary scenarios and lowest in the helical and nonhelical ones.
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Figure 6.10: Distribution functions of the absolute RM for different seeding models. The
dotted lines show the contribution to the total PDF from the regions excluding galaxy
clusters while the filled histograms represent contributions from galaxy clusters (ρ/⟨ρ⟩ ≥
1.3× 102).

This result is a consequence of the RM being an integrated quantity. The sum of coherent
magnetic fields will give rise to a strong RM signal, which is the case in the uniform and
scale-invariant models (see first and second panels of Figure 6.9). On the other hand,
the sum of stochastic magnetic fields can cancel out and weaken the RM signal (see
third and fourth panels of Figure 6.9). In addition, the RM maps are determined by the
total level of magnetisation at this epoch (see Table 6.3). The helical and nonhelical
seedings lead to lower magnetisation levels in filaments, as was discussed in Sections 6.5
and 7.3.1. Therefore, this adds to the discrepancy observed between inflationary and
phase-transitional models. We also note that uniform seeding leads to higher Faraday
rotation than the scale-invariant seeding. This seems to be in agreement with the results
that are given in Ref. [253], where the authors explored also a uniform seed field and
various seeds described by power laws. Nevertheless, our inflationary results cannot be
directly compared to this recent work since they applied a subgrid dynamo model for
further magnetic amplification.

In Figure 6.10 we show the corresponding PDFs for the absolute value of RM at
z = 0.02. We additionally show the PDF for the regions excluding galaxy clusters (dotted
lines), and for galaxy clusters with the overdensity criterion ρ/⟨ρ⟩ ≥ 1.3 × 102 (filled
histograms). These criteria were applied before computing the integral defined in Equa-
tion (1.8). The distributions accounting for the whole 67.7 (h−1cMpc)3 region, as well
as distributions excluding galaxy clusters, peak at 1.6× 10−3, 4× 10−3, 1.2× 10−2, and
1.7 × 10−2 rad m−2 for the nonhelical, helical, scale-invariant, and uniform cases, re-
spectively. When considering only the highly ionised regions (clusters; T > 106 K), the
PDFs peak at 1.5×10−2, 4.5×10−2, 0.3, and 0.5 rad/m2 for the nonhelical, helical, scale-
invariant, and uniform cases, respectively. We see that the highest RM values are obtained
at these highly ionised regions for the four models. As can also be seen in Figure 6.9, the
highest values of RM tend to follow the collapsed structures. Similar trends have been
observed in other cosmological simulations (see e.g., [252]). In line with Figure 6.9, we
find that the highest RM values are observed for the two inflationary models.

In the following, we extend the analysis to a range of redshifts. In Figure 6.11 we
show the redshift evolution of the mean and rms statistics of |RM| within different en-
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Figure 6.11: Redshift evolution of the mean and rms statistics of the absolute |RM| for
the whole simulating volume (first column), for the regions excluding galaxy clusters
(ρ/⟨ρ⟩ < 1.3× 102; second column) and for the regions satisfying the criteria for WHIM
(105 ≤ T ≤ 107, ρ/⟨ρ⟩ < 1.3 × 102; third column). The upper panels show the mean
values and the lower panels show the rms values. Statistics of all these regions exclude
the lowest-density regions (satisfying the ρ/⟨ρ⟩ < 2× 10−2 criterion).

vironments and for different seeding scenarios. We analysed a total of 20 cosmological
boxes (corresponding to 20 redshift bins) in a redshift range of 3 ≤ z ≤ 0.02. This range
is particularly relevant, for example, for the upcoming WEAVE-LOFAR survey [308],
where one expects to obtain spectroscopic redshifts for all polarised radio sources de-
tected in the LOFAR Two-meter Sky Survey (LoTSS, [309]) up to z < 1. In the first
column of Figure 6.11, we show the statistics from the whole simulating box while the
second and third columns show the RM statistics in the regions excluding galaxy clusters
and in the warm-hot intergalactic medium (WHIM), respectively. The regions excluding
galaxy clusters imply the same criterion as in Figure 6.10, while for the WHIM region we
additionally set the temperature criterion 105 K ≲ T ≲ 107 K. Due to the cosmological
expansion, it is expected that the mean and rms RM will decrease with time. This is in
particular true for the lowest-density regions of the cosmic web where there is almost no
turbulent amplification (see the second and third columns of Figure 6.11). As we can see,
the highest rms and mean |RM| values are obtained when including cluster environments
and in the WHIM, which are the densest regions. The first is consistent with previous
numerical work, where it has been found that the resulting RM is dominantly contributed
by the density peaks along the LOS (see e.g., Refs. [310,311]). Note that in these regions
our reported RM values are lower than the typical observed values due to our limited res-
olution (see discussion in Section 6.7). RMs of hundreds rad m−2 have been observed
in clusters (see Ref. [312] for a sample of galaxy clusters). Since clusters are especially
underresolved in our simulations, the RM values in these regions should be interpreted
only as lower limits.

We characterise the |RM|rms evolution by fitting the data to the following equation:
|RM|rms = RM0(1 + z)α. We show the fitted values for each environment for the four
models in Table 7.3.4. Since the definition of RM (see Equation 1.8) includes the proper
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Figure 6.12: Simple illustration of random and physical pairs used in the RM measure-
ments [14, 15]. The RMGal denotes the contribution to the total RM from the rotation
effect caused by Galactic magnetic field. The RMlocal denotes the Faraday rotation contri-
bution that is caused by the source magnetic field itself. The figure credit: Ref. [14].

values of the electron density, magnetic field, and integration path length, we expect it to
scale as RM∼ (1 + z)2, with α = 2. However, as we can see from Table 7.3.4, α < 2 for
all environments in the uniform and scale-invariant case; i.e., the decrease of RM values
with redshift will be slower in these scenarios. This means that magnetic fields along
with density do not only decrease in these regions, as it is expected by the expansion of
the Universe but are subject to amplification.

Recently, Ref. [14] and Ref. [15] presented a new approach in order to isolate the
extragalactic RM variance. The method relies on comparing pairs of extragalactic radio
sources and computing the difference in the ∆RM between two types of pairs. Following
Refs. [14, 15], the statistical results come from computing the ∆RM = RM1 −RM2 for
sources at the same redshift (named as physical pairs), e.g., double-lobed radio galaxies,
and from sources at different redshifts (named as random pairs). Here, RM1 and RM2

are the total RMs that are measured for each source being within the physical or random
pair. Figure 6.12 illustrates contributions in the total RM from the intervening IGM for
the random pairs (left panel) and physical pairs (right panel). Since random pairs are
background sources at different redshifts, one expects larger ∆RM between such sources.
After analysing the difference between physical and random pairs, the authors of Ref. [15]
concluded that the excess Faraday rotation contribution found for the random pairs has
an upper limit of 1.9 rad m−2; they placed an upper limit of 4 nG for a PMF. A similar
analysis at 1.4 GHz and in a redshift range of 0 < z < 1 was done in Ref. [14], where
the authors obtained an excess contribution for the random pairs of 10.3 rad m−2. In this
case, the authors placed an upper limit of ∼ 37 nG.

In order to compare our simulation results with the results of these recent work, we
would have to carry out a careful study of stacking cosmological boxes (see Ref. [313]
and Ref. [314], for pioneering work) and defining light cones before integration (see
Refs. [253, 311] in the context of RM). Such a study is out of the scope of this project
and we leave it for future work. Nevertheless, we can give a first-order estimate on the
RM difference by using the information in Figure 6.11.

We considered the |RM| distribution function of the simulation box to be represen-
tative of each redshift. In this way, we select the variance of the distribution to be the
representative value at each redshift. We analysed a total of 20 redshift bins up to z = 3,
where we obtained 190 different combinations of redshift pairs. Note that here we do not
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take into account the spatial distribution of possible sources within each simulation box.
Instead we assume the PDF statistics to be representative of the simulation box at that
redshift. We refer the reader to Appendix 9.2.4 for a word on the distribution of sources
as a function of redshift.

We compute the variance in the environment where we exclude the regions of galaxy
clusters (see second column of Figure 6.11) and the WHIM environment (see third column
of Figure 6.11). These two environments are less affected by our low resolution. We are
also interested in these environments because LOFAR is not expected to detect polarised
sources from intervening clusters [315]. As a second step, we compute the average vari-
ance between each selected redshift (random) pair, i.e. taking into account all redshift
bins in between the pair. Once this is done for all the 190 pairs, we compute the rms of all
the variances. This procedure yields an rms upper limit in the WHIM of 0.7, 0.6, 0.3, and
0.2 rad m−2 for the uniform, scale-invariant, nonhelical, and helical cases, respectively.
The environment where we only exclude galaxy clusters gives similar values: 0.6, 0.5,
0.3, and 0.2 rad m−2, respectively. These RM values are marginally lower than the results
reported at 144 MHz in Ref. [15] or in Ref. [14]. After analysing the difference between
physical and random pairs, the authors concluded that the excess Faraday rotation contri-
bution between random pairs has an upper limit of 1.9 rad m−2. This work places an upper
limit of 4 nG for a PMF. A similar analysis at 1.4 GHz and in a redshift range of 0 < z < 1
was done in Ref. [14], where the authors obtained an excess contribution between random
pairs of 10.3 rad m−2. In this case, the authors placed an upper limit of ∼ 37 nG. Our
rms RM values suggest that an initial magnetic seed larger than 1 nG for the four dif-
ferent seedings is required to meet these particular observational RM upper limits. We
can give crude estimates of the initial magnetic field strength by asking ourselves which
initial magnetic field strength is needed to reach the upper limit of 1.9 rad m−2 for all our
models: the results of the uniform, spatially homogeneous field (the Mukohyama model)
and the scale-invariant, inflationary field would suggest an initial magnetic field strength
of ∼ 3 nG. This is comparable to LOFAR results and remains below the upper limits ob-
tained in Ref. [15] and in Ref. [14]. Nevertheless, this crude approach alone cannot strictly
rule out the ∼ 1 nG normalisation (see discussion below); the phase-transitional models
would allow for an even larger initial magnetic seed, namely a magnetic field strength
of a primordial stochastic seed (helical or nonhelical) ∼ 6 nG. These values could be in
agreement with CMB constraints of helical (∼ 5.6 nG) and nonhelical (∼ 4.4 nG) PMFs
(see e.g., [21]). Yet, these high values conflict with recent Planck, Atacama Cosmology
Telescope (ACT) and South Pole Telescope (SPT) constraints of a ∼ 0.05 nG PMF [316].
It is important to stress that a one-to-one comparison with these recent RM observations is
not strictly possible since the reported upper limits are also influenced by environmental
selection effects. In this sense, we can only conclude that our first-order approximation
RM analysis favours more inflationary PMFs than phase-transitional PMFs. While future
simulations with a more sophisticated RM analysis could improve our predictions, future
observations that will better isolate the RM signal from the diffuse WHIM and/or voids
and filaments will play a decisive role in discriminating PMF models.

We expect great advances with LOFAR in the coming years. There has been signif-
icant progress in overcoming challenges in observations by using the ionospheric RM
correction errors techniques (see e.g., Ref. [317]. These techniques have significantly im-
proved and will be crucial for the accurate calibration of not only the next LOFAR surveys
but also for the SKA. Indeed, the SKA-Low and SKA-Mid (see Ref. [318] and references
therein) is expected in coming years to provide stronger constraints on the magnetisation
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Model Environment RM0 α

(rad/m2)

Exc. clusters 0.15 1.12
Uniform WHIM 0.17 1.26

All 0.59 0.31
Exc. clusters 0.11 1.20

Scale-invariant WHIM 0.12 1.36
All 0.34 0.61

Exc. clusters 0.01 2.03
Helical WHIM 0.02 2.21

All 0.03 1.15
Exc. clusters 0.01 2.07

Nonhelical WHIM 0.01 2.22
All 0.01 1.52

Table 6.3: Fitted values of |RM|rms ∝ RM0(1 + z)α of Figure 6.11 for different environ-
ments of our simulations.

of the Universe. The increased expected number of polarised sources and knowledge of
spectroscopic redshifts will enable us to make better comparisons with cosmological sim-
ulations. We expect that these advances can further help us to distinguish between the
possible origins of cosmic magnetism. The present work shows that a scale-invariant and
phase-transitional helical and nonhelical models still cannot be rejected. In future work,
we will study a more extended range of initial conditions in parallel with the stacking
technique and definition of light cones to put more stringent constrains.

6.7 Numerical aspects
The spatial resolution adopted in the present simulations place limitations on our results.
Our resolution is not sufficient to resolve, for example, the additional magnetic amplifi-
cation within galaxy clusters [44, 45, 47]. Nevertheless, in Appendix 9.2.1 we show that
our results are robust at least on scales ≳ 1Mpch−1. We have checked the convergence
of the magnetic energy power spectrum in the whole simulation box with increasing res-
olution (see Figure 9.1 in Appendix 9.2.1). As expected, increasing the resolution results
in higher power at higher wavenumbers. On the other hand, we have also checked the
trends of the magnetic field compared to the density for the phase-transitional helical and
inflationary uniform cases at different resolutions (see Figure 9.2 in Appendix 9.2.1 and
corresponding discussions). In the uniform scenario, there is no substantial change in the
overall trends at higher resolution. On the other hand, the phase-transitional helical case
shows subtle differences in filaments and voids, while the main differences are observed
in the overdensity regions corresponding to galaxy clusters. This seems to indicate that
our results on the global properties of the filament and void regions, as well as the differ-
ences between the primordial models in those regions, are robust for the present goal of
this work.

We also tested the dependence of our RM results on the adopted spatial resolution in
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the Appendix 9.2.1. We show the distribution of RM at z = 0.02 at different resolutions
for the uniform scenario in Figure 9.3. At double resolution, the |RM| values converge for
the environment excluding clusters, while for the cluster environments we still see higher
(lower) RM values at the high-end (low-end) tail of the distribution. We expect the same
follows for the stochastic scenarios.

The Dedner cleaning algorithm used in our work has an intrinsic dissipation com-
pared to the CT scheme (see Section 5.2). This reduces the magnetic spectral bandwidth
to keep the numerical divergence under control (see Ref. [319]). The Dedner formalism
has been tested to be robust, accurate and to converge quickly to the right solution for
most idealised test problems (see e.g., Refs. [113, 320, 321] and for other more realis-
tic astrophysical applications Refs. [322–324], as long as the resolution is conveniently
increased.

As mentioned in Section 5.3, we neglected physical processes associated with radia-
tive gas cooling, chemical evolution, stellar and AGN feedback. In this way, we can
solely focus on the effects of different primordial magnetic seeding through LSS forma-
tion. However, these unaccounted processes, are known to pollute the rarefied regions
of the cosmic web and, thus, they can potentially lower the possibility of detecting the
imprints of different PMFs (see e.g., Ref. [252]). We refer the reader to Ref. [53] for a
comparison between the predictions of primordial and astrophysical seeding scenarios of
magnetic fields with the Enzo code.

In addition, as an important caveat, we note the effect of different Riemann solvers
on our results. The most diffusive Riemann solver LLF [266] of Enzo affects the evo-
lution of magnetic energy in the tested nonhelical case and decreases it by factor of 2 at
final redshifts (see Appendix 9.2.2 for more details). Consequently, the magnetic field
and temperature distributions in the void regions also show lower values at z = 0.02 for
the phase-transitional cases. In the uniform case, on the other hand, we do not observe
changes in temperature and magnetic fields due to the LLF solver. We also checked the
effect of the DEF used in our simulations, which controls thermal energy in highly super-
sonic bulk flows. We verified that the DEF does not affect the magnetic field distribution
neither in the uniform case nor in the stochastic, nonhelical case. This holds for both
Riemann solvers, LLF and HLL. Nevertheless, the DEF affects the temperature distribu-
tion, as expected. We caution the reader on the interpretation of the regions where shocks
and discontinuities are created by the extreme gravitational forces. However, we do not
expect these regions to be statistically significant to modify the obtained trends from our
simulations.

The initial conditions used in the simulations, do not account for the effect of magne-
tised perturbations on the initial matter power spectrum (see, e.g., Refs. [72–74], where
the authors have taken this effect into account), which would give us a self-consistent
view of the cosmological initial conditions. Nevertheless, it has been recently shown that
such effects will only have an impact on smaller haloes and on scales ∼ k > 1h Mpc−1.
Therefore, we would not expect significant changes in our results at the largest and most
massive components of the cosmic web.

Finally, in our work we have excluded the nonideal MHD processes, meaning that the
viscous and resistive dissipation are not modelled realistically and, therefore, the mag-
netic Prandtl number, i.e., the ratio of kinematic viscosity and magnetic diffusivity, is
effectively unity. This approach is reasonable enough given the existing uncertainties and
the difficulties in the characterisation of galaxy clusters (see e.g., Refs. [325, 326]) and
larger cosmological scales. Furthermore, the ideal MHD description allows us to easily
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compare our work with previous work (see e.g., Refs. [79, 253, 327]). Studying higher
Prandtl numbers is out of the scope of this work.

6.8 Conclusions
In this work we have investigated the evolution of PMFs through the formation of LSS.
For the first time, we have compared inflationary and phase-transitional initial seed mag-
netic fields with cosmological MHD simulations. We have explored four types of initial
magnetic seeds: (i) spatially homogeneous (uniform) and (ii) statistically homogeneous
(scale-invariant) magnetic fields generated in an inflationary epoch, and (iii) helical and
(iv) nonhelical magnetic fields representing a phase-transitional scenario. In the latter
three models the initial magnetic spectra reflect the physics of the early Universe when
the magnetic seed develops Kolmogorov-like turbulent spectra through its MHD decay,
while the former case mimics a primordial magnetogenesis according to the Mukohyama
model [56].

The main results of our work can be summarised as follows:
• The role of the initial magnetic field strength. A higher normalisation of the initial

magnetic field leads to higher magnetic field values at later redshifts. However, the
overall trend of the distribution of final magnetic fields in different cosmic envi-
ronments is not affected by the amplitude of the initial seed field. Regarding the
temperature distribution, we note that phase-transitional seedings (nonhelical case)
may lead to extra heating in the void regions as a result of possible turbulent decay
of these fields. In addition, the higher (initial ≥ 0.5 nG) magnetic field realisation
reveals larger differences between the inflationary and phase-transitional models.
This suggest that an impact of the stronger initial seed fields will be imprinted on
rarefied cosmic regions. Hence, both the strength and topology of the seed fields
will be of notable relevance for the studies accounting for the effects of magnetic
fields on the reionization history of the Universe [272, 292].

• Traces in the cosmic web. Phase-transitional and inflationary scenarios lead to vari-
ations in the final magnetic field distribution of the cosmic web. The magnetic
amplification in the inflationary models tends to follow the law of adiabatic gas
contraction in voids (partially) and filaments, while a deviation from this law is
evident in the phase-transitional models. The overall magnetisation of galaxy clus-
ters and bridges as well as of voids in the inflationary models can be orders of
magnitude higher than in the phase-transitional scenarios, although the differences
between the models on the galaxy clusters’ and bridges’ scales will be a subject
of our future study (and should be confirmed with higher resolution runs). Dis-
cernible differences (with a lower magnitude) between the seeding scenarios are
also observed in filamentary structures, where again inflationary seed fields show
the largest magnetic amplification.

• Possible inverse cascade. The characteristic peak of the magnetic power spectra
in the phase-transitional helical and nonhelical cases shifts toward small scales at
late redshifts, z < 6. This means that, during this epoch, preferred scales due to
structure formation would initially quench the energy transfer from small to large
scales. At later stages, z < 3, we observe a shift of the peak spectrum from small to
large scales in the nonhelical case without an increase of correlation length, though.
Therefore, our results cannot unambiguously confirm the existence of an inverse
cascade.
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• Magnetic correlation length. The final correlation length in the inflationary seed-
ings is larger than that in the phase-transitional seedings (reaching ∼ 3, 4, 1, and
0.8Mpch−1 in the uniform, scale-invariant, helical, and nonhelical models, re-
spectively). Previous modelling of PMFs in the early Universe (in the radiation-
dominated epoch) showed the same trend: inflationary, scale-invariant scenarios
lead to coherent magnetic structures on larger scales than in the phase-transitional
cases [24, 163, 216]. We found that the final magnetic correlation length in the
phase-transitional cases is strongly correlated with the initial peak spectrum, limit-
ing the magnetic growth at selected scales of the cosmic web.

• Uniform versus stochastic inflationary models. The late (z > 6) evolution of spec-
tral magnetic energy of an inflationary, scale-invariant case at scales ≲ 10Mpch−1

shows similar amplification as the inflationary uniform case. A uniform, homoge-
neous seed magnetic field that is customary to use in cosmological MHD simula-
tions is a good representation of a scale-invariant magnetic field on scales smaller
than ∼ 29Mpch−1 at z = 0.02.

• Nonhelical versus helical phase-transitional models. The spectral evolution of the
phase-transitional helical and nonhelical models are similar at all wavenumbers.
However, the helical model exhibits more amplification as a result of larger initial
correlation length and power on a characteristic scale than in the nonhelical sce-
nario. We have shown that, within the limitations of our modelling, it will be hard
to distinguish observationally between helical and nonhelical scenarios.

• RM predictions. Significant differences are observed in Faraday rotation measure
maps for different PMF models. These differences arise both in the collapsed ob-
jects and in the low-density regions of the cosmic web. We computed the rms |RM|
excess coming from random redshift pairs (z ≤ 3) for the regions excluding galaxy
clusters and the WHIM. RM values for all the models are lower than expected from
the recent observations reported at 144 MHz [15]. Our RM analysis favors infla-
tionary seed fields with larger magnetisation levels in filamentary structures.

• Non-Gaussianity. We find non-Gaussian trends in the magnetic field PDFs for both
inflationary and phase-transitional seedings. This is also imprinted on the distri-
bution functions of the absolute RM, where all models show deviation from a log-
normal distribution. The low-end tail (10−12− 10−10 G) of the magnetic field PDFs
is similar for all models; on the contrary, we observe larger differences between the
models in the RM distribution function for both the low- (10−8 − 10−5 rad m−2)
and high-end tails (10−1 − 102 rad m−2) of the PDFs.

In summary, our results indicate that phase-transitional and inflationary PMFs lead to
different realisations of the magnetised cosmic web (retaining the information of magnetic
initial conditions on the largest scales of the Universe). The differences can potentially
be probed observationally. The Faraday rotation measures from our simulations manifest
the traces of the initial magnetic seeding. A stronger and more correlated RM signal
is expected from inflationary scenarios as a result of larger initial correlation lengths and
higher final magnetisation levels in filaments from these scenarios. In future work we will
complement our analysis by stacking the cosmological boxes and producing light cones
to give more realistic estimates of RMs. Future observations (e.g., SKA) will detect the
RM signal over a large extent of the sky and have the potential of unravelling the origin
of magnetic fields on filamentary scales. Then the results of future work can be readily
compared to those observations probing the large-/small-scale nature of the seed magnetic
fields.
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Finally, future numerical work related to high-energy gamma-ray propagation in cos-
mic voids (for relevant studies, see, e.g., Refs. [53, 102, 327] and Ref. [103] for a recent
work) will be relevant to probe the seed magnetic fields studied in our work. It is not
clear a priori what kind of topology of void magnetic fields is responsible for the sup-
pression of the secondary gamma-ray flux [101]. Therefore, studying inflationary and
phase-transitional scenarios in the context of the magnetisation of cosmic voids could
help to more stringently discriminate between the competing magnetogenesis scenarios.
This, in turn, will help us understand the effects of such fields on the reionization history
of the Universe and first structure formation (see e.g., Refs. [251]). Our work gives a first
step and a novel approach in the search for the origin of cosmic magnetic fields. Future
effort in combining state-of-the-art MHD cosmological simulations and more realistic ini-
tial magnetic field conditions will be needed to explore the role of the primordial fields
on galaxy-cluster scales and down to smaller scales.
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Chapter 7

PMFs in Galaxy Clusters

In this chapter we study the evolution of PMFs on galaxy cluster scales. We are interested
in the non-linear growth of the field and whether it can erase the imprints of different
PMFs in the ICM. We show results from our paper:

• Mtchedlidze, S., Domı́nguez-Fernández, P., Du, X., Schmidt, W., Brandenburg,
A., Niemeyer, J., Kahniashvili, T., “Inflationary and phase-transitional primordial
magnetic fields in galaxy clusters”, ApJ 944, 100 (2023).

I confirm the sole contribution to the paper and responsibility for the following: par-
ticipation in the study conception and design, running of simulations and data analysis,
interpretation of the results and the draft manuscript preparation.
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7.1 Physical model
In this work, we explore two phase-transition-generated PMFs characterised by a Saffman
and a Batchelor spectrum, and two inflationary-generated PMFs characterized by a turbu-
lent spectrum and by a Dirac delta function (in Fourier space, corresponding to a uniform
magnetic field). The latter model serves as a comparison to our simulations with other
cosmological simulations where a uniform seed magnetic field is commonly assumed as
an initial condition (see, e.g., Refs. [45, 252, 254]). Nevertheless, as already discussed
before, the physical generation of a uniform seed magnetic field in the early Universe has
been predicted to be plausible under specific conditions by Ref. [56]. We again refer to
this model as the Mukohyama model.

We adopt these models as our initial magnetic conditions despite our relatively low
initial resolution of 312.5 h−1ckpc (see below). We note that this initial resolution may
not be enough for resolving the magnetic field coherence scales expected from theory or
small scales dominated by the turbulent spectra (see Section 4.2).

7.2 Simulations
In this study, we simulated the formation of a galaxy cluster employing the AMR tech-
nique of Enzo (see Section 5.4) We followed two steps for solving the galaxy cluster:
(1) a global AMR simulation, where we identified a list of fairly resolved haloes and (2)
a local AMR or ‘zoom-in’ simulation, where we applied several levels of AMR in a se-
lected region where the cluster forms. In both setups the refinement is triggered based
on baryon, fb, and dark matter, fDM, overdensity thresholds. These parameters ensure
refinement when the gas (DM) mass in a cell reaches a factor of fb (fDM) times the mean
baryonic (DM) mass expected in a cell at the root grid level [113]. In this study, we use
a nominal refinement factor of 2 between the parent grid and its subgrid which is the
commonly used value for cosmological simulations (see Ref. [113] for more details). In
the global AMR simulations, we set fb = fDM = 4 and we use 4 levels of refinement
activated in the whole, (80 h−1cMpc)3 simulating box. We used a root grid of 2563 cells
and 2563 dark matter (DM) particles each of mass mDM = 3.34× 109M⊙. The initial and
final spatial resolutions are 312.5 h−1ckpc and final 19.5 h−1ckpc, respectively. Based
on this simulation, we produced a halo catalog using the yt halo finder [328]. The halo
finder identifies groups of linked DM particles based on the Eisenstein and Hut [329]
algorithm. The galaxy cluster selected for the present work is among the most massive
clusters from our halo catalog (see Section 7.2.2 for a detail description of the cluster).
Next, we re-simulated the selected galaxy cluster in the (80 h−1cMpc)3 simulation box
by centering our simulation box where the galaxy cluster forms. We selected a volume of
(20 h−1cMpc)3 and used 7 levels of refinement. In this case, the refinement was triggered
on fb = 0.1 and fDM = 4 refinement factors giving us a final maximum spatial resolution
of 2.44 h−1ckpc.

The selection of the overdensity factors, fi (where ‘i’ indicates baryons or DM), is
important and depends on the problem being addressed. In this work, the grid refinement
thresholds are chosen in order to solve the turbulent motions in the ICM which are crucial
for the seed magnetic field amplification. Mergers and accretion events driven by gravita-
tional dynamics are the main agents of turbulence in the ICM. Therefore, low overdensity
thresholds for both gas and DM ensure resolving low-mass gas substructures and DM ha-
los (as discussed in Ref. [261]) and thus, can maintain turbulence in the ICM [280]. Note
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Figure 7.1: The initial magnetic power spectra for the stochastic setups and velocity (pur-
ple dotted) and density (purple dashed) spectra shown for the run with the uniform model.
The first and second secondary axis showed on the right correspond to the density and ve-
locity spectra in (1063 g/ cm3)2 h−1cMpc and 108 cm2/ s2 h−1cMpc units, respectively.
The initial power spectra of the baryon and DM perturbations are nearly indistinguishable
at the scales resolved by our resolution. The only difference between these two spectra is
in their amplitude.

Scenario Model Simulation ID ⟨B2
0⟩ ⟨B0⟩ B1Mpc λB

(nG)2 [nG] [nG] h−1 cMpc

inflationary
(i) uniform u 0.99 0.99 — —

(ii) scale-invariant km1 0.99 0.92 0.92 33.04

phase-transitional
(iii) Saffman k2 0.99 0.92 0.92 1.07
(iv) Batchelor k4 0.99 0.92 0.92 0.85

Table 7.1: Initial conditions for the magnetic field. The correlation length and mean value
of the smoothed (smoothed on 1h−1cMpc scale) magnetic field are denoted by λB and
B1Mpc accordingly, and ⟨B2

0⟩ and ⟨B0⟩ are the mean of the initial magnetic field energy
and the initial magnetic field strength respectively

that lower refinement factors significantly increase the number of refined grids and one
has to compromise between the final resolution and the computational cost. For this pur-
pose, we used a higher value of the fDM compared to the fb factor. This selection closely
follows [45], where the authors have proven that the impact of an increased DM reso-
lution is only minor on the final magnetic field distribution (see Figure 17 in Ref. [45]).
Indeed, we will show in Section 7.2.2 that the chosen refinement thresholds result in large
turbulence filling factors in our simulated ICM.

7.2.1 Initial conditions
We study four different realisations of the simulated galaxy cluster. Our simulations dif-
fer only in the initial magnetic field configuration. We assume only non-helical magnetic
fields (at the initial redshift z = 50) that have the same total magnetic energy (see Ta-
ble 7.2). The four models are:
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Figure 7.2: Projected maps of gas density (top panel) and magnetic field from a
(3h−1cMpc)3 box for different seeding scenarios (bottom panel) and at different stages of
the cluster evolution. Left, middle, and right panels show projected fields at the merging
(z = 0.48), post-merger (z = 0.3) and relaxing (z = 0.01) states, correspondingly. Mag-
netic field projections for the Batchelor and Saffman models are normalised by a factor of
10.

(i) Uniform (spatially homogeneous; constant) field; corresponding to an inflationary
magnetogenesis scenario (the Mukohyama model [56]).

(ii) Scale-invariant field: stochastic, statistically homogeneous PMF (with a turbulent
spectrum) corresponding to an inflationary scenario.

(iii) Saffman model: a stochastic, phase-transition generated PMF which has a Saffman
spectrum.

(iv) Batchelor model: the same stochastic setup as (iii), but with a Batchelor spectrum.

The initial conditions (ii)–(iv) were again produced with the PENCIL CODE [288].
Even though magnetic initial conditions in this study are different from what have been
used in Chapter 6, the procedure of producing them is the same. See Appendix 9.1. The
initial magnetic power spectra for these stochastic setups are shown in Figure 7.1.

7.2.2 Selected cluster
The selected cluster from our two-step simulations can be seen in Figure 7.2. The total
mass of our cluster, 2.39 · 1014M⊙, is comparable to the masses of some observed galaxy
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Radius Mass Etot = Ekin + Eth

[h−1cMpc] [1014M⊙]

R500 = 0.50 1.14 0.15
R100 = 1.01 1.86 0.16
Rvir = 1.54 2.39 0.16

clusters such as Abell 3527 (see e.g., Ref. [330]) or the recently studied Ant cluster [1].
We summarise the most important parameters of our simulated cluster in Table 7.2.2.

The formation history of a galaxy cluster fully determines the amount of amplification
of the seed magnetic field. Our selected cluster undergoes a series of mergers and its
evolution can be characterised by three phases: (1) at the early stage of formation, z ≲
0.7, it continuously grows by several accreting minor merger events; (2) in the redshift
range 0.7 to 0.3, a major merger takes place with a mass ratio of 1.2 between the main and
secondary clusters (within R500 radius), and (3) at late redshifts, i.e., z < 0.3, it enters
into a relaxing state. In Figure 7.3 we show the mass accretion history of the cluster in the
redshift range 1.5 > z > 0. The mass of the cluster is computed within Rvir and we show
its evolution for the uniform model. We indicate the major merger phase with a shaded
grey area (∼ 2Gyr timescale) in Figure 7.3. During this phase, we observe a steep growth
of the total mass increasing by a factor of ∼ 2.

Mergers of clusters play a key role in shaping the properties of the ICM by injecting
turbulence. To characterise the turbulence in our simulated galaxy cluster, we followed
the recipe proposed by Ref. [282]. In that work, the authors used the vorticity modulus
as an indicator of the velocity fluctuations and its volume filling factor fω as a proxy for
the turbulent state of galaxy clusters. In detail, the procedure consists of flagging a cell as
“turbulent” if it satisfies the criterion (see Ref. [282, 331] and references therein)

ωvort,i > N/tage, (7.1)

where ωvort,i is the vorticity in the ith cell, tage is the age of the Universe at redshift z,
and N is the number of eddy turnovers, respectively. Following [282], we set N = 10.
Finally, the volume filling factor fω is the volume fraction satisfying Equation (7.1). The
authors find that fω is substantial both in the core and outskirts of their simulated galaxy
cluster reaching fω > 90% and fω > 60%, respectively. In the bottom panel of Figure 7.3,
we show the evolution of the volume filling factors computed for the core and outskirt re-
gions of our simulated galaxy cluster. The volume filling factors are shown to be also
substantial, with percentages larger than 90% in the core region and 60% in the outskirts.
We note that we obtain similar results as Ref. [282], even though our numerical setups
differ. For example, their simulations use 8 AMR levels triggered by spatial derivatives of
the velocity field to reach a final maximal resolution of 7.8h−1cMpc. Additionally, they
make use of a subgrid scale model that is based on the Germano [332] formalism to ac-
count for unresolved turbulent motions in the ICM; see also Ref. [333]. Thus, our volume
filling factors along with high final resolution of 2.44h−1ckpc, show that our numerical
setup is adequate for capturing turbulent motions in the simulated galaxy cluster.
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Figure 7.3: Time evolution of the total virial (r = Rvir) mass (black solid line) and
vorticity volume filling factor for the cluster core (solid lines) and the outskirts enclosing
a spherical shells in: 0.5Rvir < r < Rvir (dashed lines) and 0.5Rvir < r < 2Rvir (dotted
lines).

7.3 Results

7.3.1 General properties
We start our analysis by giving a qualitative view of the density and magnetic field distri-
bution in the simulated galaxy cluster. In Figure 7.2 we show the projected density and
corresponding magnetic field distribution for different seeding scenarios. The projections
are extracted from a (3h−1cMpc)3 simulation box for three different epochs: merging
(z = 0.48), post-merging (z = 0.3), and relaxing (z = 0.01) phases. As we will further
discuss below, a different initial magnetic structure leads to a different final strength in
the simulated galaxy cluster. In order to better visualise the spatial differences between
our models in the projected magnetic field distribution, we normalise in Figure 7.2 the
distributions for the Batchelor and Saffman models by a factor of 10. These two models,
being correlated initially on smaller scales, reach the lowest magnetic field strengths al-
ready at early redshifts, z ∼ 10 (before the cluster forms), and later on all stages of the
cluster evolution.

In Figure 7.4, we compare the mean magnetic energy density evolution to the evolu-
tion of thermal, kinetic, and small-scale (turbulent) kinetic energy densities of the cluster
within a comoving box of side length 1.5 h−1cMpc. We compute the turbulent energy by
filtering out motions at large scales. At each component of the three-dimensional velocity,
we subtract the mean velocity smoothed on two different scales of our selection. Here,
we selected 25 h−1ckpc and 100 h−1ckpc as the fiducial smoothing scales (for a more
elaborated multi-filtering technique see, e.g., Ref. [334]). The magnetic energy density
growth in the uniform and scale-invariant cases is correlated with the growth rates of ther-
mal and kinetic energy densities. For example, the approximate power-law growths of
thermal, kinetic, and magnetic energies in the redshift range z = 3–0.65 are found to be
∼ t2.6, t3.29, and t2.77, respectively. By contrast, the magnetic energy density evolution
of the Batchelor and Saffman models show a less pronounced growth than the aforemen-
tioned trends. These models evolve as ∼ t0.38 and ∼ t0.1, respectively. In addition, we
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Figure 7.4: Evolution of thermal, kinetic, turbulent kinetic, and magnetic energy den-
sities obtained from the comoving box with a side length of 1.5 h−1cMpc. The solid,
dotted, dashed, and dashed-dotted lines correspond to uniform, scale-invariant, Saffman,
and Batchelor models, respectively. The gray shaded area covers the turbulent energies
having the smoothing scales between 25− 100 h−1ckpc and indicated with the lower and
upper gray lines, respectively. The solid gray line corresponds to the uniform case and the
dashed line to the Saffman model.

see that the magnetic energy of the cluster reaches similar levels as the turbulent energy
at all times only in the uniform and scale-invariant models. Overall, we observe the to-
tal growth of turbulent, kinetic, and thermal energy densities with respect to z = 3 to
be ∼ 700, 270, and 100, respectively. On the other hand, the magnetic energy density
of the uniform, scale-invariant, Saffman, and Batchelor models grows during the same
∼ 12Gyr time-span by a factor of 160, 130, 5, and 3, respectively.

7.3.2 Radial profiles
The radial profiles of our cluster are shown in Figure 7.5. In the top panel, we show
the magnetic field profiles along with the expected trend from adiabatic flux freezing
(∝ r−4/3) and the slope profiles. As previously mentioned, we observe that those initial
conditions with more magnetic power at large scales, such as the uniform and scale-
invariant models, show the largest field strengths. Conversely, as shown in the bottom
panel of Figure 7.5, neither in the trends of the slope nor in the radial temperature and
density profiles do we observe significant differences.

A commonly used proxy for relating the magnetic field and density distributions is
to combine their radial dependencies. In the outskirts (r > 150h−1ckpc), this leads to
Buni ∝ ρ0.43, Binv ∝ ρ0.50, BSaff ∝ ρ0.54, and BBatch ∝ ρ0.49 for the studied models.
These trends are similar to those inferred from the radio observations of the massive
M200 ∼ 1.8 × 1015M⊙ [335] Coma cluster [18], but are smoother than the slopes found,
e.g., in the observations of the less massive cluster M200 ∼ ×1014M⊙ [336], or Abell 194
[19]. It should also be noted that the strength of the magnetic field in the core of the Coma
cluster is found to be higher (4.7µG) than the obtained values from our simulations.
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Figure 7.5: Radial profiles of the magnetic field (top panel) with the corresponding lin-
ear fits (dotted lines) for each magnetic seeding model and density and temperature fields
(bottom panel). All profiles are calculated in a sphere having r = Rvir radius. In the out-
skirts magnetic field scales as r−1.19, r−1.39, r−1.5, r−1.34 for the uniform, scale-invariant,
Saffman and Batchelor models, respectively.

Figure 7.6: Redshift evolution of PDF. From left to right: the uniform, scale-invariant,
helical and non-helical seedings. PDFs are obtained within the sphere having Rvir radius.
The red dashed line shows lognormal fit for each model.

This can be explained by the fact that the simulated galaxy cluster in our work is still
dynamically young (see, e.g., Ref. [52], who finds that dynamically older relaxed clusters
have larger magnetic field strengths in the ICM [52]. In general, we find these trends to
be in good agreement with the results of Refs. [45, 46], where the authors have studied
the dynamo amplification in the simulated galaxy clusters using also AMR.
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7.3.3 Probability distribution function and curvature
The distribution of magnetic fields has been the subject of several works. It follows from
the induction equation that in the diffusion free regime and the kinematic stage of the
dynamo (weak-field limit), the magnetic field is characterized by a lognormal PDF (see,
e.g., Refs. [26, 155, 337, 338]). The log-normality of the magnetic PDFs is qualitatively
understood in terms of the central limit theorem which is applied to the induction equa-
tion (without the diffusion term). A more rigorous derivation of this result involves the
Kazantsev-Kraichnan dynamo model [184, 339]. Following this model, it is possible to
predict the evolution of the mean and the dispersion (see, e.g., Equations (5) and (6) in
Ref. [337]) of the lognormal distribution of the magnetic field. The spread of the PDF of
logB both at low- and high-tails of the distribution is an important characteristic of a log-
normal distribution which means that a fluctuating magnetic field possesses a high degree
of intermittency, i.e., the fluctuations tend to become more sparse in time and space and
on smaller scales (see, e.g., Ref. [340]). In the saturated state of dynamo, this intermit-
tency is partially suppressed and the PDF develops an exponential tail (see, e.g., Ref. [26]
and recent simulations in Ref. [302]).

In the following, we check whether dynamo action is present in our simulations. A
comprehensive criterion for dynamo action in the presence of gravity is still missing; see
Ref. [183] for some attempts.1 We follow the diagnostics presented in [26] that has also
been used in [45] and [47].

In Figure 7.6 we show the evolution of the normalized magnetic field (B/Brms) PDF
for all four models. In the kinematic stage of a dynamo, [26] find that the magnetic
PDF converges onto a single stationary profile, referred to as self-similarity of the field
strength. In our simulations, we find that the PDFs of the Saffman and Batchelor models
resemble the stationary profile, while the large-scale models (uniform and scale-invariant)
do not show the same behavior towards the low-end tail of the PDF. The dispersion of
the PDF of the latter two cases decreases (although not significantly), while the disper-
sion of phase-transition-generated models stays mostly constant. At the final redshift, we
overplot a lognormal fit in Figure 7.6 and show that the low- and high-end tails of the
distribution are reasonably well fitted by a lognormal distribution for all PMF models.
Finally, we computed the kurtosis at z = 0 and obtained the values: 12, 13, 31, and 68 for
the uniform, scale-invariant, Saffman, and Batchelor models, respectively. These values
confirm that all our models exhibit super-Gaussian profiles.

The geometry of the magnetic field lines can be studied in terms of the curvature,
defined in Equation 3.39. In Figure 7.7, we show the dependence of the magnetic field
on the absolute curvature, K = |K| (top panel) and the curvature distribution (bottom
panel) at z = 0. In small-scale dynamo theory, turbulent amplification of the field pro-
ceeds by stretching and bending of field lines by turbulent eddies, which results in folded
structures (see, e.g., Figures 1 and 2 in Ref. [337]). Due to flux conservation arguments,
it is expected that the magnetic field strength is larger in the stretched segments of field
lines, while in the bends the strength remains small, i.e., the field strength and its curva-
ture are expected to be anti-correlated. This is similar to an earlier finding that stronger
flux tubes are also more straight [346]. The top panel of Figure 7.7 is a good illustration
of this hypothesis. We observe a declining profile of the magnetic field strength with
increasing curvature of the field. This anti-correlation is confirmed by calculating the cor-

1We refer here to earlier papers [341–345], who study the turbulent dynamo in the
context of the formation of the first stars.
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Figure 7.7: Profile of the magnetic field versus curvature (|K|) and curvature PDF cal-
culated from (3.0h−1cMpc)3 box at z = 0. The dotted and dashed lines in the panels
indicate scalings expected from theoretical estimations [26]. Shaded regions for each
model cover the distribution points between the 16th and 84th percentiles.

relation coefficient between the curvature and the magnetic field CK,B (see Equation (26)
in Ref. [26]). For all our models at z = 0, we obtain CK,B ∼ −0.999, which is prac-
tically its minimum possible value. We also note that this anti-correlation is observed
already from earlier redshifts in our simulations. At z = 0, we obtain slopes: −0.32
(−0.46), −0.42 (−0.39), −0.35 (−0.47), and −0.25 (−0.34) for the (1.5h−1cMpc)3 re-
gion ((3h−1cMpc)3 region) corresponding to the uniform, scale-invariant, Saffman, and
Batchelor models, respectively. Another interesting feature that we see in the top panel of
Figure 7.7, is the flattening of the magnetic field profile towards extremely low curvatures.
From the bottom panel of Figure 7.7, we see that this happens for K ≲ 7×10−3 h ckpc−1

where we observe a steep decrease (∼ K2.5) of the curvature PDFs. The bulk of the cur-
vature distribution is concentrated at the peak values corresponding to: 192, 175, 140, and
143h−1ckpc, i.e., on curvature scales, λK , for the uniform, scale-invariant, Saffman, and
Batchelor models, respectively. As we shall see in Section 7.3.4, λK is comparable to the
scale containing the largest magnetic energy. We find that the peak of the curvature PDF
shifts to the right for all our models during the major merging phase, i.e., λK decreases.
This shows that mergers tend to further compress the existing folded structure instead of
elongating it. Finally, we also observe a distinctive difference between the uniform and
stochastic models with the former exhibiting the largest curvatures.
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Figure 7.8: Redshift evolution of magnetic and kinetic (inset in the left panel) energy
spectra. From left to right: the uniform, scale-invariant, Saffman, and Batchelor mod-
els. The energy spectra are calculated from the (3.0h−1cMpc)3 box at the 7th level of
AMR using the yt interpolation method [27]. For additional effects on the shape and am-
plitude of the magnetic energy spectra, we refer the reader to Appendix 9.2.1. The axis
units in the inset are cm2 s−2 h−1cMpc and h cMpc−1 for the specific kinetic energy and
wavenumber, respectively.

In summary, (1) all PMF scenarios attain intermittent structures (log-normality of
the PDFs) during their evolution even though the growth of magnetic energy is rela-
tively lower for the Saffman and Batchelor models (see Figure 7.4). (2) There is an
anti-correlation between the field strength and the curvature for all models; however, cur-
vature scales are different for the large- and small-scale correlated fields. As a result,
different growth rates in the PMFs, i.e., possible suppression or excitation of the dynamo,
may leave imprints on the scale where further stretching and bending of the field lines is
counteracted by the stronger fields.

7.3.4 Spectral evolution
In observations, previous knowledge of the magnetic energy spectrum is required to get
more information about the general characteristics of magnetic fields in the ICM (see e.g.,
Refs. [19,20,34,347]). In Figure 7.8 we show the evolution of the magnetic energy spectra
of our four models and specific kinetic energy spectrum for the uniform model in the
inset of the first panel. The magnetic spectrum is again computed using Equation (3.36)
for different time snapshots in a (3h−1cMpc)3 simulation box that follows the cluster
centre as it evolves. From the figure, one can see the differences between the spectra of
the inflation- and phase-transition generated seed fields arise both in the amplitude and
shape of the magnetic power spectra. The differences observed in the shape are more
pronounced toward the largest scales (≳ 0.5h−1cMpc) of the simulated galaxy cluster.
In particular, at these scales the spectra corresponding to the uniform and scale-invariant
models is flatter than the spectra corresponding to the Saffman and Batchelor models. A
similar result has also been presented in Chapter 6. We will further discuss the shape of
the magnetic energy spectrum in Section 7.3.4, where we parameterise our four cases.
On the other hand, we note that the kinetic energy spectra (the inset in the left panel of
Figure 7.8) in our simulations do not show differences between different PMF models.
The spectra follow a kδ profile where δ changes between ∼ −2.3 and −2.8 at small scales
(≲ 0.5h−1cMpc) in the 9.5Gyr time span.
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In order to understand the differences in the magnetic field amplitudes between differ-
ent models, we recall that at early times (10 ≲ z ≲ 50), before the cluster forms, only the
uniform field model shows amplification homogeneously on all scales (see Figure 6.6),2

i.e., in the absence of gravitational accretion and induced turbulent motions, the stochastic
models mostly stay frozen-in or show an insignificant decay. At late times, as the cluster
forms, the large-scale stochastic model (i.e., the scale-invariant) shows a similar trend as
the uniform model and the amplitude of the power spectrum grows on all scales. This
happens because the magnetic power is concentrated on the largest scales similarly to the
power corresponding to the density and velocity fields (this can be seen in Figure 7.1, in
which we show our selected initial density and velocity power spectra, as well as in the
inset in the first panel of of Figure 7.8). In addition, when turbulence develops, it first
produces large-scale eddies that stretch and bend the field lines of those models where the
large-scale magnetic component is present. In the stochastic small-scale models, mag-
netic amplification happens after turbulence cascades down to scales comparable to the
corresponding magnetic coherence scales. Therefore, the magnetic energy of these mod-
els (Saffman and Batchelor) is prone to less efficient and slower growth. Furthermore, as
Ref. [168] pointed out, a chaotically tangled field will decay toward a folding state at a
rate comparable to the rate of the magnetic energy growth. Thus, the initial slower growth
in the Saffman and Batchelor models will further suppress the folding of the field lines,
leading to overall a lesser amplification degree in these models.

We note that different growth rates (see also Figure 7.4) for large- and smaller-scale
magnetic fields obtained in our simulations are at odds with the results of driven-turbulence
simulations; see e.g., Ref. [348] and Ref. [302] who compare the evolution of uniform
(imposed) and random (stochastic) fields in incompressible and compressible MHD tur-
bulence setting, respectively. Although, these authors also find a delay of the onset of
the linear growth for low initial field strengths (uniform field case [348]) or a decay dur-
ing the initial transient phase (random field case [302]). In the latter work, the uniform
model does not decay and shows rapid growth during this phase; this trend is similar to
the results presented in our work. Contrary to the results of driven-turbulence MHD sim-
ulations (see e.g., Refs. [26, 301]), our study does not clearly indicate forward or inverse
cascading either. However, we must bare in mind that the ICM is a complex system where
mergers might alter the mentioned trends as we have already discussed above.

Characteristic scales

A clearly visible characteristic of the magnetic energy spectrum is the peak scale LEB(k)

corresponding to 1200 and 400h−1ckpc for the uniform and scale-invariant models, re-
spectively and to 316h−1ckpc scales for the Saffman and Batchelor models. The LkEB(k)

scales are 222h−1ckpc for the uniform and scale-invariant models and 171, 154h−1ckpc
for the Saffman and Batchelor models. We also find that the peak scales of the density,
LkPρ(k), and velocity, LkEv(k) spectral energy per mode are the same: ∼ 857h−1ckpc. In
the inflationary and phase-transitional models, LkEB(k) is ∼ 1/4 and ∼ 1/5 of LkEρ(k)

2A similar result has also been shown by Ref. [302], where the authors found that
even in the case of a non-active small-scale dynamo, a uniform seed magnetic field is still
linearly amplified due to the tangling of the large-scale field (see also discussion in the
Appendix of Ref. [303] and Section 6.5). We remind a reader that in this latter work, and
generally in small-scale dynamo studies, contrary to the cosmological simulations, the
magnetic and velocity spectra are concentrated at the same scales.
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and LkEv(k), respectively. A similar result has also been found in the MHD simulations
of Ref. [167] where the authors find a ∼ 1/5 ratio at saturation between LkEB(k) and the
driving (injection) scale of turbulence.3 Therefore, our results suggest that most of the
magnetic energy resides on scales that are smaller than the gravity-induced scale or the
peak scale of the density and velocity power spectra.

In top panel of Figure 7.9 we show the evolution of the magnetic correlation length for
different PMF models. We computed the correlation length throughout the 12 Gyr period
focusing on a (1.5 h−1cMpc)3 region (as in Figure 7.4). We also did the same analysis
in a (3.0 h−1cMpc)3 region since the correlation length can depend on the box size under
consideration. During merger events (shown as vertical shaded areas in Figure 7.9), the
magnetic correlation length decreases for all four models. This happens mainly because
compression becomes dominant as the infalling gas clump crosses the cluster center.4

The same effect has also been observed in other cosmological MHD simulations, e.g.
in Ref. [46] where the authors found that major merger events shift the magnetic power
towards smaller scales. It is after each merger event that the magnetic correlation length
increases again for all four models.

Finally, as the cluster enters its relaxing phase at z ≲ 0.135, the correlation lengths
for all models converge to 260–410, 240–330, 180–230, and 170–240h−1ckpc for the
uniform, scale-invariant, Saffman and Batchelor models, respectively. These values are
one order of magnitude larger than what is obtained and typically referred to as coherence
scale (few tens of kpc) from radio observations (see e.g., Refs. [34,35,85]). The strongest
differences in the magnetic correlation length between the models are better seen at earlier
redshifts where the scale-invariant model shows a coherence length that is larger than
those of the Saffman and Batchelor models by a factor of ∼ 2. We note that while the
differences between the uniform and scale-invariant models and between the Batchelor
and Saffman models decrease after the merger events, we still observe larger correlation
lengths in the inflationary cases than in the phase-transitional scenarios throughout the
evolution of galaxy cluster in this 12 Gyr period.

In the bottom panel of Figure 7.9 we show the evolution of λ∥, λB×J, scales corre-
sponding to the inverse k∥, kB×J, characteristic wavenumbers, respectively. In small-
scale dynamo theory, it has been argued that generally kB×J > k∥ since the shear flows
can more rapidly stretch and reverse the field lines in the plane transverse of the field line
itself [see][and references therein]Schekochihinetal2002b. In other words, the growth of
the typical fluctuation wavenumber k =

√
k2B×J + k2∥ should be mostly due to the in-

crease of kB×J. It has been shown that in both, the MHD dynamo [26] and the plasma
dynamo [351], the kB×J > k∥ ordering is satisfied in the initial, rapid growth phase and
persists in the kinematic and nonlinear regime of a dynamo (during saturation). As we
can see from Figure 7.9, the condition kB×J > k∥ is satisfied for z < 3 in the simulated
cluster for all four magnetic cases. We find a maximum ratio of kB×J/k∥ ∼ 2 − 3 dur-
ing the 12 Gyr period. The ordering of these characteristic scales seems to be consistent
with the arrangement of a magnetic field in folded structures; see also Figure 23(a) of
Ref. [26]. This result, along with the log-normality of the PDFs and curvature results,
would be compatible with the kinematic stage of a dynamo in our simulations.

3See also Ref. [349] and Ref. [350], who studied the dependence of different charac-
teristic scales on magnetic Prandtl number.

4We note that merger events add additional power as they enter the analysing box, and
therefore, this can also contribute to the decrease of magnetic correlation length.
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Figure 7.9: Evolution of magnetic correlation length (top panel) and characteristic paral-
lel and perpendicular scales (bottom panel) for the simulated galaxy cluster. The vertical
shaded regions show merging phases during the evolution of galaxy cluster. The horizon-
tal shaded areas in the top panel are delimited according to the analyzed region; lower
(upper) lines correspond to a (1.5h−1cMpc)3 ((3.0h−1cMpc)3).

Parameterised magnetic energy spectra

In order to discriminate among magnetic field models we characterised the magnetic en-
ergy spectra in the (3 h−1cMpc)3 box. We considered two different fitting functions.
First, we use the equation:

EB(k) = Akβ
{
1− erf

[
B ln

(
k

C

)]}
, (7.2)

where A gives the normalisation, B is related to the width of the spectra, C is a char-
acteristic wavenumber of the magnetic field, and β is the slope of the spectrum at small
wavenumbers. This fitting function has been used in Ref. [46] to study the evolution of
magnetic energy spectra for a set of highly resolved galaxy clusters, assuming a uniform
magnetic field seeding. The large-scale slope used by the authors satisfies the Kazant-
sev [184, 185] scaling, β = 3/2. We use a similar approach by fitting Equation (7.2) to
the magnetic energy spectra of our simulated cluster and obtaining the best-fit parameters
A, B, and C. In our case, we fix the initial β at each time-step separately. That is, as a
first-step, we determine the large-scale slope of the spectra, β, and, as a second step, we
fix this value in the fitting equation.

106



Figure 7.10: Parameter space for the best-fit parameters of our different PMF models
considering a (3.0h−1cMpc)3 region. Smaller-size markers and lower-opacity colours
show the parameters at early times. The top and bottom panels show the results from the
fits according to Equations. 7.2,7.3, respectively.

The second fitting function is motivated by the MHD simulations in [24], where a
phase-transition-generated magnetic field has a pronounced peak on the scale of the field
generation. We adopt the following spectral shape [24, 352]

EB(k) = (1 +D)1/αEm
(k/k∗)

β

[1 +D(k/k∗)α(β+γ)]1/α
, (7.3)

where D controls the peak scale, Em is the normalisation, k∗ is the peak wavenumber,
and β and γ are the slopes at large (k < k∗) and small scales (k > k∗), respectively. The
value of α is chosen to be 0.25 to ensure a smooth transition between the spectra on large
and small scales. In this case, D,Em, γ are the best-fit parameters obtained. Figure 7.10
summarises the results of our fitting procedure using Equations (7.2) and (7.3). We only
show the most important best-fit parameters for each model in Figure 7.10, while we
provide all the parameters at z = 0 in Table 7.3.4. In the upper panel we show the C − β
parameter space (see Equation (7.2)) and in the lower panel we show the γ−β parameter
space (see Equation (7.3)). We show the evolution of the fitting parameters for a time
span of 6.1Gyr in the redshift range of 0.63 ≤ z ≤ 0. As it can be seen from Figure 7.9,
this period encompasses a major merger event at z ∼ 0.48 and the relaxing phase of the
cluster.

The C–β and γ–β parameter spaces highlight how the spectral characteristics of the
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Model Eq. A [G2 h−1cMpc] B C [h cMpc−1]
Em [G2 h−1cMpc] D γ

u
(7.2) 8.92× 10−16 2.16 3.29
(7.3) 1.63× 10−15 0.03 5.10

km1
(7.2) 2.54× 10−16 2.56 4.25
(7.3) 6.44× 10−16 0.095 5.92

k2
(7.2) 8.66× 10−19 2.27 2.29
(7.3) 3.57× 10−18 0.403 3.68

k4
(7.2) 4.91× 10−19 2.17 2.16
(7.3) 1.62× 10−18 0.427 3.57

Table 7.2: Parameters of the power spectra for different models and for different fitting
functions at z = 0. The power spectra is fitted with Equations (7.2) and (7.3). The fixed
β parameters are: 0.37, 0.54, 1.61, 1.46 for the uniform, scale-invariant, Saffman and
Batchelor models correspondingly, and α = 0.25.

inflationary cases differ from those of the phase-transitional cases. In the following, we
discuss the main points:

(i) The evolution of the C parameter varies between 2–4.5 h cMpc−1 for the inflation-
ary models and between 1–2.8h cMpc−1 for the phase transitional models. The
ratio between the magnetic correlation length and 1/C is ∼ 1.4 for the inflationary
models and ∼ 0.5 for the phase-transitional seedings. That is, λB ≳ 1/C for the
former scenarios and λB ≲ 1/C for the latter models. This shows that this fitting
equation is a good proxy for obtaining a characteristic scale of the magnetic field
that can be comparable or of the same order as λB.

(ii) The large-scale slope of the magnetic power spectra characterised by β deviates
from a Kazantsev slope in the inflationary models where β ≲ 1. In contrast, the
phase-transitional models are approximately characterised by a Kazantsev slope at
late redshifts. These models show a scatter in the range 1.2 ≲ β ≲ 2.5, where the
slope tends to flatten progressively towards ∼ 3/2 as the cluster virialized.

(iii) The small-scale slope of the magnetic power spectra characterised by γ varies be-
tween 3.9–6.5 in the inflationary models and 2–4.1 in the phase-transitional models.
As seen from Figure 7.8, the magnetic energy growth at scales larger than the char-
acteristic scale is more pronounced in the two inflationary cases, therefore, explain-
ing the larger values of γ compared to those from the phase-transitional models.

Finally, we note that we refrain ourselves from claiming that the phase-transitional
models can corroborate the 3/2 large-scale slope predicted by the Kazantsev model since,
as can be seen from Figures 7.8 and 7.10, throughout the complex evolution of galaxy
clusters this slope can vary. Indeed, the multiple merger events that lead to the final for-
mation of a cluster already breaks down one of the most basic assumptions of Kazantsev
theory, i.e., a delta correlated (in time) velocity field.

7.4 Rotation Measures
Galaxy cluster RM study can be especially important for the PMF constraining prospects.
As we will discuss in Section 8.1 future surveys may enable us to distinguish between
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Figure 7.11: Top panel: RM maps [rad/m2] calculated from a (3h−1Mpc)3 box; bottom
panel: PDF of the absolute RM in the same box (green color) and in the cluster outskirts
(purple): Rvir < r < 2 × Rvir; z = 0.1. The dashed grey lines in each panel show the
corresponding lognormal fit for the PDFs.

different magnetogenesis scenarios based on the realistic RM analysis from simulations.
In the top panel of Figure 7.11, for illustrative purposes, we show the RM from our sim-
ulated galaxy cluster extracted from a (3h−1Mpc)3 box at z = 0.01. As we can see, in
agreement with the RM maps from our cosmic-web study (Section 6.6, see Figure 6.9),
the uniform and scale-invariant models show larger RM amplitude and more coherent fea-
tures compared to the Saffman and Batchelor models. This is a consequence of the larger
correlation lengths and field strengths obtained in the former scenarios. While the mean
RM from all models is close to zero (with an offset of 0.7 rad/m2 in the uniform model),
the corresponding standard deviations, σ, are 27.53, 20.62, 2.02, 1.62 rad/m2 for the uni-
form, scale-invariant, Saffman and Batchelor models, respectively. We note that the RM
differences between the four models in the innermost region of the cluster (∼ 200h−1kpc)
decreases and become almost indistinguishable. The bottom row of Figure 7.11 comple-
ments the discussion above. Here we show the PDF of the absolute RM considering the
same region as of the RM maps on the top row (green color) and considering just the
outskirts of the cluster, Rvir < r < 2×Rvir (red color). The RM PDFs in the cluster cen-
tral region peak at 0.564, 0.083, 0.008 and 0.027 rad/m2 for the uniform, scale-invariant,
Batchelor and Saffman models, respectively. In the outskirts’ region the PDFs peak at
lower values: 0.009, 0.002, 0.0007 and 0.001 rad/m2 for the uniform, scale-invariant,
Batchelor and Saffman models, respectively. All PDFs are generally well fitted by a log-
normal function.

7.5 Numerical aspects
The numerical resolution is an important caveat for the analysis conducted in this work.
As mentioned earlier (in Chapter 6), magnetic fields tend to be more strongly affected
by resolution effects than the velocity field, for example [45, 286]. Therefore, the growth
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rates of the seed magnetic fields in galaxy clusters are also resolution-dependent. Within
our numerical setup, we assess the convergence of our results by performing extra simula-
tions with different AMR levels. In Appendices 9.3.1 and 9.3.2, we show how the power
spectra, the PDFs, and the radial profiles of the magnetic field are already converged at 6
AMR levels (on scales ≳ 50h−1ckpc).

As in Chapter 6, we relied on the Dedner cleaning algorithm. In Section 6.7 we noted
that the intrinsic dissipation of the Dedner scheme by cleaning waves can affect the final
magnetic growth of the magnetic field models. Consequently, we cannot entirely rule out
that numerics (see also Appendix 9.2.2) can also contribute to the obtained differences
between the growth rates of the inflationary and phase-transitional models. In Figure 9.8
of Appendix 9.3.1, we show the radial profile of the magnetic field divergence in our
simulated cluster. The densest central region of the cluster exhibits a similar normalised
divergence for our four PMF models, whereas some differences between inflationary and
phase-transitional cases can be observed only at large radii, ≳ 1.2h−1cMpc, with the
former case showing the lowest values. Nevertheless, the Dedner cleaning method keeps
the numerical magnetic field divergence below ∼ 5% (∼ 8%) of the local magnetic field
within the cluster volume having r = R500 (r = R100) radius. This shows that the
divergence stays reasonably low in the largest fraction of the simulated cluster volume.

As mentioned in Section 5.1, we did not take into account any additional physics
(e.g., radiative cooling) Although, the inclusion of additional physics such as feedback
and radiative cooling physics might alter the amplification levels of our PMF models and
therefore, may affect the final magnetic fields (see e.g., Refs. [53, 252]). The effect of
these processes on distinguishing between different magnetogenesis scenarios will also
be studied in our future work.

7.6 Conclusions
In this work we have investigated the evolution of PMFs during the formation of a mas-
sive galaxy cluster. We studied seed magnetic fields resembling inflation- and phase-
transition-generated non-helical fields. In the former case, we assumed either (i) a uni-
form, constant magnetic field or (ii) a stochastic field. The stochastic model is motivated
by the pre-recombination evolution of an inflationary seed field (initially having a scale-
invariant spectrum), while the uniform case corresponds to the Mukohyama model. In
the case of phase-transition-generated seed magnetic fields, we studied stochastic models
with initial (iii) Batchelor and (iv) Saffman spectra. These magnetic spectra are motivated
by the causal generation and evolution of phase-transitional fields until recombination.

The main results of our work can be summarised as follows:
1. Final amplification. The amplification of a primordial seed magnetic field in the

ICM strongly depends on the initial structure of the magnetic field. In our simulated
galaxy cluster, the inflation-generated uniform and scale-invariant models show
more efficient amplification compared to the phase-transition-generated Saffman
and Batchelor models. We see that in the former cases the magnetic energy density
is of the same order of magnitude as the turbulent energy budget of the cluster. In
such cases, the magnetic power is concentrated on the largest scales, similarly to the
power corresponding to the density and velocity fields. This leads to more efficient
turbulent amplification of these large-scale models compared to the small-scale,
phase-transitional seed magnetic fields.
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2. Radial profiles. The radial magnetic field profiles at the final redshift (z = 0) reflect
the aforementioned differences in the magnetic energy growth. The amplitude of
the uniform and scale-invariant models is one order of magnitude larger (∼ 0.8–
1µG, cluster centre) than the amplitude attained by the phase-transition-generated
magnetic fields (∼ 0.1µG). The declining magnetic field profile towards the out-
skirts reveals the largest differences between the uniform (r−1.19) and the Saffman
(r−1.5) models.

3. Small-scale dynamo. All of our models exhibit a degree of small-scale dynamo
amplification as hinted at by the lognormality of the magnetic field PDFs and the
folded structure of field lines (anticorrelation between the field strength and curva-
ture and ordering of the characteristic wavenumbers). Consistent with the previous
works [45–47], we find that cosmological MHD simulations do not exhibit a small-
scale dynamo that can be compared one-to-one to the Kazantsev theory.

4. Coherence lengths. We find that, throughout the evolution, the magnetic correlation
length of the cluster depends on both the initial structure of the seed field and the
merger history. We find that the inflationary models (initially large-scale correlated
PMFs) will inherently attain larger coherence lengths than the phase-transitional
models throughout the evolution of galaxy clusters. This trend is persistent even
during merger events, where the correlation length decreases for all models. At the
final redshifts, we observe a factor of ∼ 1.5 difference in the coherence scales of
the uniform and scale-invariant versus Batchelor and Saffman models. The correla-
tion lengths calculated from a [(1.5–3)h−1cMpc]3 analyzing box span in the range:
260–410, 240–330, 180–230, 170–240h−1ckpc for the uniform, scale-invariant,
Saffman, and Batchelor models, respectively.

6. Spectral characteristics. We provide two possible fits for the magnetic energy
spectra. The parameterization of the magnetic energy spectra shows how phase-
transitional and inflationary models can be differentiated. The large-scale slopes
(β parameter; see Section 7.3.4) are smaller (≲ 1) for the inflationary PMFs, and
larger (1.2 ≲ β ≲ 2.5) for the phase-transitional PMFs for a time span of 6.1
Gyr (0.63 ≤ z ≤ 0). The Batchelor and Saffman models have Kazantsev scal-
ing (β = 3/2) at the final redshifts, even though these fields are amplified to
a lesser degree. On the contrary, the small-scale slopes (γ parameter; see Sec-
tion 7.3.4) are larger for the inflationary models (γ ∼ 3.9–6.5) than for the phase-
transitional seedings (γ ∼ 3.9–6.5). The 1/C scales at the final redshift are:
300h−1ckpc, 240h−1ckpc, 440h−1ckpc, and 460h−1ckpc for the uniform, scale-
invariant, Saffman, and Batchelor models, respectively.

7. Imprints on RM?. Galaxy cluster RM maps qualitatively show differences between
different PMF seeding models which are better seen in the cluster outskirts. A more
realistic galaxy cluster RM analysis is required in order to compare the results of
our simulations with radio observations and that we defer to our future work.

In summary, we conclude that the two competing scenarios of primordial magnetoge-
nesis, inflationary and phase-transitional, can indeed be distinguished on galaxy cluster
scales. The initial structure of the seed magnetic field affects the efficiency of the dynamo.
Thus, PMFs do not only leave unique imprints on scales larger than those of galaxy clus-
ters (Chapter 6), but it can also influence small-scale dynamo action in the ICM. These
signatures are reflected in the magnetic energy power spectrum and the coherence scale of
different models. An analytical power spectrum of the magnetic field is required for syn-
thetic RM studies (see the method description in, e.g., Ref. [20], giving us the possibility
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to constrain the structure of observed galaxy-cluster magnetic fields. We provide two ana-
lytical models that can readily be used in observational works (see, e.g., Refs. [19,34,93]
for such examples).

Finally, since inflationary models show larger field strengths (both in the centre as
well as in the outskirts of the simulated cluster) and coherence scales, these may make
them better candidates for producing e.g., the central cluster radio diffuse emission in the
form of the “megahalos” that have been recently detected with LOFAR [Low-Frequency
On the other hand, inflationary magnetogenesis scenarios would be also favoured for ob-
taining the fast magnetic field amplification needed to explain the observed diffuse radio
emission in high redshift galaxy clusters [62]. Deeper observations of megahalos along
with detailed RM images obtained by future observations with the SKA and the upgraded
LOFAR 2.0, will have the potential of unravelling the origin of large-scale magnetic fields.
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Chapter 8

Summary and future directions

The ubiquitous presence of magnetic fields on the largest scales of our Universe has
motivated the research on PMFs, presented in this thesis. In the first four chapters, we
tried to give the reader an overview of the observational evidence of large-scale magnetic
fields and a theoretical framework through which we modelled the evolution of PMFs
during large-scale structure formation. We briefly summarised scenarios of the produc-
tion of PMFs during inflation and phase transitions and their evolutionary trends in the
pre-recombination Universe. We also provided a description of the methods used in our
cosmological simulations for the reader to better understand the setup, results, and nu-
merical caveats of our works presented in Chapters 6 and 7.

The main result of our work is the distinguishable evolution of PMFs during struc-
ture formation. More specifically, we have shown that neither turbulent amplification (on
galaxy cluster scales) nor the adiabatic compression of the magnetic field (e.g., filamen-
tary scales) entirely erases the imprints of PMF generation scenarios. Although, this is
at odds with the results of pure MHD simulations (i.e., simulations without gravity) we
noted that the initial topology of the field should be of notable relevance for the gravity-on
simulations where one has preferred scales due to structure formation. We have also stud-
ied observational signatures of PMFs on the RM and concluded that future radio surveys
should provide valuable insight about the origin of the observed large-scale fields. Our re-
sults will have important astrophysical and cosmological implications. In this chapter, we
review some of the cosmological implications and future plans motivated by our cosmic
web and galaxy-cluster studies.
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Figure 8.1: RM profile (continuous line) and predictions for the RM observations from
future SKA survey for the coma-like galaxy cluster (discrete points; mock RM observa-
tions). Observations from Ref. [18] is overplotted in blue colour. Figure credit: Ref. [28].

8.1 Future prospects
PMFs in galaxy clusters: Future RM measurements in galaxy clusters will play a deci-
sive role in understanding the origin of large-scale magnetic fields. The next generation
of radio telescopes will have high sensitivity in resolving background polarised sources
and therefore, will provide us with a larger number of RM data per galaxy cluster. Fig-
ure 8.1 from Ref. [28] shows RM profile for a coma-like galaxy cluster which is obtained
by integrating the Equation (1.8) (continuous line). The discrete data in the figure shows
RM derived by integrating Equation (1.8) separately for each background source when
one assumes the same number of background sources as expected from the SKA obser-
vations. Such analysis is usually referred to as mock RM observations and it is done
by pre-assuming the shape of the magnetic energy spectrum (along with gas density dis-
tribution) which is commonly taken to be a power law [18, 34, 353] (with Kolmogorov
scaling). However, recent observational work [20] has also accounted for the power spec-
trum of the magnetic field obtained from cosmological simulations (although for cluster
relic analysis). Our galaxy cluster study and fitting formulae then enable us of conducting
a similar analysis when the magnetic power spectrum is set according to inflationary and
phase-transitional magnetogenesis scenarios. This will be especially important for future
observational surveys since one can potentially distinguish between different PMF mod-
els provided a larger number of RM data [28]. In addition, future surveys may enable us
to directly link the RM data with the magnetic field structure. For instance, Refs. [35,354]
have shown the link between the magnetic energy power spectrum and 2D RM. Our cur-
rent galaxy-cluster simulations can already be used to probe the relationship between the
2D RM map and magnetic energy spectrum, i.e., whether the results from the simulations
match the theoretical expectations [354]. Constraining the magnetic energy spectra from
the current or future radio will be another step forward in understanding the nature of the
magnetic field.

Finally, It should be mentioned that in our future works we can study the dependence
of the turbulent growth of inflationary and phase-transitional PMFs on the field strength
and dynamical state of galaxy cluster; i.e., aiming at answering the following questions:
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(1) does the dynamical state of galaxy clusters affect the growth rates of different PMF
models? (2) Is the overall turbulent amplification of the PMF initial amplitude dependent?

PMFs in IGM: imprints on the γ-ray spectrum. Blazar spectra observations are
unique probes of magnetogenesis scenarios. Modelling of blazar-induced cascade emis-
sion can provide important information on the strength and structure of the large-scale
magnetic field. The resulting spectra can be directly compared with the observational
data obtained from current/future observations (with the Fermi/CTA telescopes). In such
modelling of blazar spectra, the large-scale magnetic fields are usually represented by a
monochromatic (peaked at one given scale) spectrum (see Ref. [9] for a review). How-
ever, in our work (Chapter 6), we have shown that magnetic field structure in the cosmic
web is rather complex and depends on the primordial magnetogenesis scenarios. There-
fore, it is interesting to model the propagation of high energy γ-rays while accounting
for the realistic distribution of magnetic fields provided from cosmological simulations.
Furthermore, our work allows us to study not only the effects of the PMF topology on
the cascade spectrum but also the complex interplay of the magnetic field strength and
structure on the blazar spectra. Specifically, in future work, we can investigate the ef-
fects of the coherence scale and strength of the magnetic field on the low-end tail of the
blazar spectrum (see the right panel Figure 1.4); i.e., (1) is the suppression of the GeV
emission more effective for the inflationary models which show large coherence scales
and large amplitude of the field in the magnetised cosmic web? or (2) is the GeV “halo”
more diffused when the magnetised structures (and therewith the void regions) are seeded
by the smaller-scale (phase-transitional) PMFs? The increased sensitivity of future CTA
telescopes in the 20–200GeV range exactly matches the energy range where the effects
from PMFs are expected. Thus, this new survey will be of crucial importance for testing
the results of our study and therefore, primordial magnetogenesis scenarios.

Imprints on the γ-ray halo. Studies presented in this thesis can be used for search-
ing the magnetic helicity imprints. Helical magnetic fields lead to unique morphological
signatures in γ-ray-induced electromagnetic cascades [9, 111, 112]. The sign of magnetic
helicity correlates with the handedness of the halo morphology (see Figure in Ref. [9]). In
our cosmic-web study [10], the initial simulation setup for the phase-transitional helical
and non-helical fields differs by an initial magnetic energy spectrum (because of more ef-
ficient inverse cascade that helical models undergo in the early Universe) as it was shown
in Figure 6.1). In the case of inflation-generated PMFs, both inflationary helical and non-
helical fields lead to a similar spectrum at the end of the recombination epoch. Then our
future work can complement the cosmic web study by simulating the evolution of infla-
tionary helical PMFs in order to understand the signatures on the magnetised cosmic web
coming solely from the primordial helicity. This novel approach will be another indepen-
dent probe of primordial magnetogenesis scenarios. In particular, if the inflationary and
phase transitional helical fields lead to distinguishable halo morphology, a comparison of
the results of such a study with future observations may enable us to directly settle the is-
sue of the origin of observed large-scale magnetic fields. In Figure 8.2 we summarise the
imprints of magnetic fields on the cascade emission. The joint study of the emission using
the magnetic field distribution from cosmological simulations and Monte-Carlo simula-
tions for modelling is required in order to analyse the mentioned imprints.

Imprints on the RM. As it was mentioned in Section 6.6 the novel observational ap-
proach presented by Ref. [14] can be used to constrain the extragalactic RM variance and
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Figure 8.2: Scheme for the illustration of joint cosmological and Monte-Carlo simula-
tions for modelling the blazar spectrum. The magnetic field distribution produced in the
cosmological simulations can be provided in the Monte-Carlo simulations of the propaga-
tion of high energy γ-rays. Comparison of the simulated and observational spectrum can
be used to put constrains on the field strength from different primordial magnetogenesis
scenarios. PMF imprints on the halo (if detected) morphology, in turn, can give us a hint
on the primordial helicity and magnetogenesis scenarios. The credit for the figures of the
γ-ray spectrum and halo: Ref. [9].

thus, the magnetic field strength in the IGM. In Chapter 6 we compared the results of our
RM analysis with the constraints obtained from Refs. [14, 15]. However, a more realistic
comparison of our simulation results can be done by stacking the cosmological boxes, as
we have already discussed. In other words, in order to get a more realistic estimate of
RMIGM one should consider the large LOSs, larger than the simulated box in our cosmic-
web study. The cosmic-web study can be used to stack cosmological boxes, construct the
light cones at the redshift range relevant for the current/future observations (e.g., for the
upcoming, SKA precursor, WEAVE-LOFAR survey [308]) and study the dependence of
RMIGM on redshift. The scatter in RMIGM values from different magnetogenesis scenarios
can give as a hint to whether the studied primordial magnetogenesis is within/above the
observational constraints.

PMFs and structure formation. A considerable numerical and theorethical effort is
being made for understanding the impact of PMFs on structure formation. The effects of
PMFs have been discussed in the context of reionisation [160, 272, 292, 355], first (pop-
ulation III) star [251], direct collapse black hole [356] and dwarf galaxy formation [73].
In connection with reionisation physics, Ref. [272] has shown that the standard picture
of the IGM temperature evolution is altered when accounting for the heating processes
(through the decaying MHD turbulence and ambipolar diffusion1).

Refs. [68, 69, 123] discuss PMF-induced perturbations (sourced by the Lorentz force)
that affects the matter power spectrum. This idea has further been explored in cosmo-
logical simulations [73, 74] where modification of matter power spectrum due to PMFs
increases star formation rate in dwarf galaxies [73] or leads to an unrealistically early

1Ambipolar diffusion is a process when the relative velocity between the charged and
neutral particles is damped due to ion-neutral collisions; this leads to the dissipation of
magnetic energy and heating of the medium.
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collapse of first galaxies [74]. On the contrary, Refs. [251, 357] argue in favour of the
delayed collapse of population III stars. Thus, currently there is no consensus view on
the question. Nevertheless, a more realistic initial conditions that takes into account PMF
decay processes in the early Universe might advance our understanding on the impact of
PMFs on first structure formation.

PMFs and other physics? PMFs might also serve as indirect probes of DM physics,
e.g., to put constraints on the mass of axion-like particles (ALPs; pseudo-scalar fields
being candidates for dark matter which have been proposed in the extension of standard
model physics), and to advance our knowledge on the ALP-photon mixing, i.e., on the in-
terconversion of photons and ALPs which takes place in the presence of external magnetic
field [358–360]. It will be interesting to study how different topology of PMFs would af-
fect the process. For instance, Ref. [361] has studied the impact of the topology of the
magnetic field on the ALP-photon conversion and found that helical magnetic field struc-
ture is of notable relevance for the process. Ref. [362], on the other hand, has studied the
TeV blazar spectrum to search for an excess photon flux that may be due to ALP-photon
mixing along the LOS. The authors also considered the ICM magnetic fields (with power
law spectra) in their study. The magnetic power spectrum obtained in our galaxy cluster
study can be used to study how the realistic distribution of the ICM magnetic fields would
affect the process; or how the constraints on the ALP-photon coupling constant are altered
when considering the different PMF models.

Finally, it should also be mentioned that recently the North American Nanohertz Ob-
servatory for Gravitational Waves (NANOGrav) reported strong evidence for a stochastic
gravitational wave (GW) background [363]. Probing primordial magnetogenesis scenar-
ios can help us to bridge constraints on PMFs with GW physics. For instance, if the
observed large-scale fields are of a phase-transitional origin then is the amplitude of these
fields such that they could induce detectable relic gravitational waves? This might help to
constrain GW generation scenarios from the early Universe sources.
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Chapter 9

Appendices
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9.1 PENCIL CODE Initial Conditions
The uniform magnetic field model which we use in both of our simulations (cosmic web
and galaxy cluster studies) is already implemented in in the Enzo code. A stochastic
magnetic field models, on the other hand, require a special treatment as it is the result of an
MHD simulations with the PENCIL CODE [288]. In this code, we solve the compressible
resistive MHD equations [149], in which we advanced the magnetic vector potential. We
adopt an ultrarelativistic equation of state, appropriate during the radiation era. The initial
condition consists of a Gaussian-distributed spatially random field such that the magnetic
energy spectrum has a certain shape, for example: it is proportional to k−1 for the scale-
invariant spectrum and proportional to k4 for wavenumbers k < k∗ and proportional to
k−5/3 for k > k∗ in the case of a phase-transitional initial magnetic field adopted in
the cosmic-web study. In the PENCIL CODE, the simulation domain is triply periodic
and normalised such that its volume is (2π)3, and so the smallest wavenumber in the
domain is then k1 = 1. We choose k∗ = 120 for the runs with phase-transitional initial
magnetic fields. The sound speed, cs and the mean density are normalised to unity. The
rms magnetic field, and thus the initial rms Alfvén speed is vA = 0.1...0.2. We solve the
equations for a time interval ∆t such that csk1∆t = 10, corresponding to vAk∗∆t ≈ 200.

We generate the magnetic field components as eigenfunctions of the curl operator, but
for helical fields the sign of the eigenvalue is the same for all wavevectors; see Equa-
tion (23) of [24]. Helical magnetic fields are still random and isotropic, but they have
the same systematic swirl of field lines everywhere in the domain, just like a box with
randomly oriented screws which all have the same sense of winding.

The use of a stochastic initial magnetic field requires a modification of Enzo where
the field is normalised such that for each component Bs,i, the input (proper) magnetic
field is:

Bs,i =
BP

σP
Bcom,i (1 + zini)

2, (9.1)

where BP is the input from the PENCIL CODE, σP is its standard deviation, and zini is the
initial redshift (z = 50). We set Bcom,i = 1nG and take Bu,i = RMS[Bs,i] for the B-field
components in the case of a uniform initial field. In this way, we normalise all the initial
conditions to have the same magnetic energy,

∫
(B2/8π) dV .

9.2 Cosmic web project

9.2.1 Resolution tests
In order to test the convergence of our simulations, we compared our setup with the
higher-resolution runs including uniform and helical magnetic seeding only (as the evolu-
tion of the power spectrum seems to be similar toward smaller scales in the uniform and
scale-invariant cases and helical and nonhelical cases). These runs used the same set of
cosmological parameters and the box size as is used in the main paper. Since the initial
stochastic magnetic field distributions are obtained from the PENCIL CODE, in the helical
case we used the AMR technique of the Enzo code [113] to reach the same resolution
(132h−1 kpc) as in the uniform case with 10243 grid points. In Figure 9.1 we show the
growth of the magnetic field power spectrum as a function of spatial resolution. As we
can see, for our case (i.e., the run with 5123 grid points, ∆x = 132h−1 kpc resolution), the
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Figure 9.1: Magnetic energy power spectrum with increasing resolutions (comoving: 264
h−1kpc, 132 h−1kpc, 105 h−1kpc, 66 h−1kpc) for the uniform (top panel) and helical
cases (bottom panel) at z = 0.02.

Figure 9.2: The median magnetic field versus overdensity profile for increasing grid
points (256, 512, 640, 1024) at z = 0.02. Solid lines: uniform seeding case; dashed lines
helical case.
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Figure 9.3: |RM| distribution function dependence on resolution (comoving: 264 h−1kpc,
132 h−1kpc, 105 h−1kpc, 66 h−1kpc) at z = 0.02 for the uniform seeding. The solid lines
represent regions excluding galaxy clusters, while the shaded areas show distributions
only for galaxy clusters.

magnetic energy in Fourier space for the uniform seeding (solid lines) would be underes-
timated on scales ∼ k > 0.5hMpc−1 (cluster scales), while in the helical case (dashed
lines) only the minor difference is expected when doubling the resolution. As we can also
see the larger scales k ≲ 0.5hMpc−1 are well converged in our simulations.

Conversely, we can see in Figure 9.2 that the median profiles show no differences
in the trends when the higher-resolution simulation is seeded by the uniform magnetic
field. On the other hand, in the case of helical seeding (dashed lines), higher magnetic
field strength is achieved in the filaments’ and clusters’ regions and lower strengths in the
voids for the higher-resolution run. Therefore, we would expect the differences between
the inflationary and phase-transitional models to be decreased in these regions as a result
of higher resolution.

In Figure 9.3 we also show the resolution dependence of the PDF of absolute RM. We
see that RM values show convergence in the regions where we exclude galaxy clusters,
while RMs in galaxy clusters are mostly affected at the high-end and low-end tail of the
distribution. This means that our analysis of Sec. 6.6 will be more affected in galaxy-
cluster regions.

9.2.2 Testing the Riemann solver
An important aspect of our work is also to determine the dependencies of our results on the
adopted numerical methods. As discussed in Section 7.3.1, PMFs are expected to heat the
IGM at high redshifts. Nevertheless, the absence of heating and cooling physics in our
simulations poses a challenge for the interpretation of large thermal energies observed
in the turbulent helical and nonhelical models at redshifts z > 10 (see Figure 6.5). In
order to check the energy evolution, we have tested our setup with two different Riemann
solvers, the LLF and the HLL. Note that the LLF scheme is considerably more diffusive
than the HLL scheme. In Figure 9.4 we show the evolution of thermal, kinetic, and
magnetic energies obtained from these two setups. Additionally, we show the evolution
of thermal and kinetic energies for a B = 0 case using the HLL Riemann solver. As we
can see, the pure hydrodynamical setup shows the lowest thermal energy at high redshifts
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Figure 9.4: Evolution of magnetic, thermal, and kinetic energies for the uniform and
nonhelical cases when using HLL (solid, dashed, dashed-dotted lines, where the latter
corresponds to the B = 0 case) and LLF (dotted and dashed-dotted lines) Riemann solver
schemes.

Figure 9.5: MHD simulations with an initial kinetic energy spectrum proportional to k−2

in the presence of a weak homogeneous magnetic field. Panels (a) and (b) show the early
and late evolution for magnetic energy spectra (red) and kinetic energy spectra (blue).

in comparison to the MHD cases. On the other hand, the evolutionary trends of the
thermal and kinetic energies in the MHD cases are not affected by the change of Riemann
solvers. This shows that the already observed differences between turbulent, nonhelical
and uniform models in thermal energy (see discussion in Section 7.3.1) are not dependent
on the selection of the Riemann solver. However, the LLF scheme substantially affects the
evolution of the magnetic energy in the nonhelical case. The stronger numerical diffusion
completely suppresses the magnetic field amplification at lower redshifts, suggesting that
this method may not be optimal for the study of stochastic PMFs.

9.2.3 Tangling of a homogeneous field
In Section 6.5, we noted the rather different response to an imposed (uniform) magnetic
field in the present simulations (see the first panel of Figure 6.6) and those of [216], where
magnetic fields at the scale of the domain began to grow only after smaller-scale magnetic
fields have grown first. An important difference, however, is that our present cosmological
simulations always possess a large-scale velocity field, which was not present in the sim-
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Figure 9.6: Number of virialized objects with baryonic mass range 107M⊙ ≤ M ≤
1010M⊙ as function of redshift. The masses have been calculated within the sphere en-
closing the virial radius of each source. This radius is an output of the yt halo finder.

ulations of [216]. The large-scale velocity field in the cosmological simulations leads to
tangling of the uniform imposed magnetic field, which leads to the instantaneous growth
immediately at the beginning of the simulation.

To verify our reasoning above, we now repeat the simulations presented in Figure 5
of [216] with a weak imposed field, but now with a random initial velocity field with an
initial kinetic energy spectrum proportional to k−2. The result is shown in Figure 9.5,
where we show the resulting magnetic and kinetic energy spectra. Note the increase of
spectral magnetic energy at all wavenumbers already occurs from early times onwards.
This is caused by the tangling of the homogeneous magnetic field by the initial large-scale
velocity field with a k−2 spectrum. This therefore confirms our reasoning in Section 6.5
concerning the rather different response to an imposed magnetic field in the present sim-
ulations and those of [216].

9.2.4 RM sources
As we mentioned in Sec. 6.6 our statistical RM analysis does not take into account the spa-
tial distribution of sources at each redshift. Nevertheless, we show the expected redshift
distribution of sources in Figure 9.6 for completeness. For this Figure, we used the yt halo
finder [328], which identifies the groups of linked DM particles based on the [329] algo-
rithm, for each redshift in order to find a selected number of haloes with a baryonic mass
range, 107M⊙ ≤M ≤ 1010M⊙. This range resembles the masses of FRII galaxies, which
are the typical type of polarised sources found in large catalogs (see e.g., [364, 365]).

9.3 Galaxy cluster project

9.3.1 Resolution tests & Divergence
In this appendix we discuss the dependence of the results of Chapter 7 on the adopted
spatial resolution. We use the same initial conditions and perform different simulations
increasing the levels of AMR. We show the results corresponding to a maximum of 5, 6
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Figure 9.7: Upper panels: Magnetic energy power spectrum calculated for different AMR
levels and different box sizes at z = 0. We show the uniform (top panel) and Batchelor
(middle panel) cases. The black, dashed, and dashed-dotted lines in each panel show the
power spectrum calculated from a zero-padded array. Lower panel: Magnetic field PDFs
of the uniform (solid lines) and Batchelor (dashed lines) models at z = 0 at different
AMR levels.
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Figure 9.8: Normalized divergence of the magnetic field from the simulation with a max-
imum of 7 levels of AMR (where ∆ is the mesh spacing in the x-direction).

and 7 levels of AMR in Figure 9.7. The dependence on spatial resolution of the magnetic
power spectrum and the PDF of the magnetic field is shown with different colors. Even
though we see more variation for the Batchelor model (middle panel and dashed lines of
bottom panel), we observe convergence of both the uniform and Batchelor models already
at the 6th level of AMR and we see no significant change in the shape of the magnetic
energy spectra.

The spectral analysis based on Fourier transforms is a common approach to study the
scale dependence of the magnetic energy. Nevertheless, some caveats of this approach
come from the effects of a limited box size and the non-periodicity of the data. In Fig-
ure 9.7 we show the outcome of these effects on the magnetic energy spectra for the
simulated uniform and Batchelor models. First, we see that for k ≲ 50h cMpc−1, corre-
sponding to scales ≳ 20h−1ckpc, the spectra are well converged in the uniform model.
The shape of the magnetic spectra for both uniform and Batchelor models is also mostly
consistent with the spectra calculated in smaller/larger boxes. As expected, the amplitude
of the spectrum is more strongly affected by the size of the analysed region. In particular,
we see ∼ 1 order of magnitude variation on the scales of ∼ 140h−1ckpc for the uniform
as well as Batchelor model.

We also note that the non-periodic boundary conditions of the selected box may distort
the spectrum. In order to check this, we calculated the power spectra from the zero-padded
array, extracted for (3h−1cMpc)3 volume from the 5-level-AMR simulation (see the black
dashed-dotted lines in Figure 9.7). As seen in the figure, the power spectrum calculated
using the standard method and zero-padding lead to similar results and show that our
results presented in the main text are not significantly affected by the non-periodicity of
the data.

Finally, in Figure 9.8 we show the radial profile of the magnetic field divergence in our
simulated cluster. The largest differences between the models arise at r ≳ 1h−1cMpc.
with the stochastic models having the largest values of the divergence. Nevertheless, as
mentioned in Section 6.7, ∇ · B stays reasonably low in our four models in the largest
fraction of the simulated cluster volume. Quantitatively, we find that the normalised di-
vergence stays below 10%.

125



9.3.2 Distribution of AMR levels

Figure 9.9: Radial distribution of refinement levels and magnetic field. The mean and
maximum within each radial bin are shown with solid and dashed lines, respectively. The
profiles are shown for the uniform and Batchelor models calculated from a sphere with a
Rrvir radius.

Similar to [45], we show the radial profile of AMR levels along with the magnetic field
profile in Figure 9.9 for the uniform and Batchelor cases from our galaxy cluster study
(Chapter 7). In the top panel of Figure 9.9 we see that our simulated cluster is resolved
with a maximum of 5 AMR levels (with 9.77h−1ckpc resolution) in the (1.5 h−1cMpc)3

central region while the mean AMR level decreases towards the outskirts. On the other
hand, the magnetic field profiles (bottom panel of Figure 9.9) show larger strengths only
in the cluster core when the number of the maximum level of AMR is increased from 5
to 7. Our AMR scheme is different from the one used in [45] where the cluster is refined
at least up to a 6th AMR level even in the cluster outskirts. An important difference,
however, between the simulated clusters used in this work and in [45] is the mass of the
cluster which is one order of magnitude larger in the latter work.

In addition, we checked the convergence of our AMR scheme by running an extra
simulation with a maximum of 8 levels of AMR (for the Batchelor model, not shown).
We do not see an important improvement in the AMR coverage of the cluster region by
using higher levels of AMR. Therefore, given our selected refinement parameters, our
AMR scheme converges already at 6 AMR levels.
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C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrand t, E. Hivon, M. Hob-
son, W. A. Holmes, A. Hornstrup, W. Hovest, K. M. Huffenberger, G. Hurier,
A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, J. Kim,
T. S. Kisner, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki,
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A. Stroe, and F. Zandanel, “Diffuse Radio Emission from Galaxy Clusters,”
Space Sci. Rev., vol. 215, p. 16, Feb. 2019.

134



[86] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,
F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A. J. Banday, R. B. Bar-
reiro, J. G. B. E. Battaner, K. Benabed, A. Benoı̂t, J. P. Bernard, M. Bersanelli,
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[230] G. Baym, D. Bödeker, and L. McLerran, “Magnetic fields produced by phase tran-
sition bubbles in the electroweak phase transition,” Phys. Rev. D, vol. 53, pp. 662–
667, Jan. 1996.

[231] B. Cheng and A. V. Olinto, “Primordial magnetic fields generated in the quark-
hadron transition,” Phys. Rev. D, vol. 50, pp. 2421–2424, Aug. 1994.

[232] G. Sigl, A. V. Olinto, and K. Jedamzik, “Primordial magnetic fields from cosmo-
logical first order phase transitions,” Phys. Rev. D, vol. 55, pp. 4582–4590, Apr.
1997.

[233] E. W. Kolb and M. S. Turner, The early universe, vol. 69. 1990.

[234] T. Vachaspati, “Magnetic fields from cosmological phase transitions,” Physics Let-
ters B, vol. 265, pp. 258–261, Aug. 1991.

145



[235] K. Enqvist and P. Olesen, “On primordial magnetic fields of electroweak origin,”
Physics Letters B, vol. 319, pp. 178–185, Dec. 1993.

[236] T. W. B. Kibble and A. Vilenkin, “Phase equilibration in bubble collisions,”
Phys. Rev. D, vol. 52, pp. 679–688, July 1995.

[237] A. Dı́az-Gil, J. Garcı́a-Bellido, M. Garcı́a Pérez, and A. González-Arroyo,
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[264] A. Dedner, F. Kemm, D. Kröner, C. D. Munz, T. Schnitzer, and M. Wesenberg,
“Hyperbolic Divergence Cleaning for the MHD Equations,” Journal of Computa-
tional Physics, vol. 175, pp. 645–673, Jan. 2002.

147



[265] C.-W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory
shock-capturing schemes,” Journal of Computational Physics, vol. 77, no. 2,
pp. 439–471, 1988.

[266] A. Kurganov and E. Tadmor, “New High-Resolution Central Schemes for Nonlin-
ear Conservation Laws and Convection-Diffusion Equations,” Journal of Compu-
tational Physics, vol. 160, pp. 241–282, May 2000.

[267] J. U. Brackbill and D. C. Barnes, “The Effect of Nonzero ∇ · B on the numer-
ical solution of the magnetohydrodynamic equations,” Journal of Computational
Physics, vol. 35, pp. 426–430, May 1980.

[268] Vides, J., Audit, E., Guillard, H., and Nkonga, B., “Divergence-free mhd simula-
tions with the heracles code,” ESAIM: Proc., vol. 43, pp. 180–194, 2013.

[269] C. R. Evans and J. F. Hawley, “Simulation of Magnetohydrodynamic Flows: A
Constrained Transport Model,” ApJ, vol. 332, p. 659, Sept. 1988.

[270] D. J. Eisenstein and W. Hu, “Baryonic Features in the Matter Transfer Function,”
ApJ, vol. 496, pp. 605–614, Mar. 1998.

[271] E. Bertschinger, “Simulations of Structure Formation in the Universe,” ARA&A,
vol. 36, pp. 599–654, Jan. 1998.

[272] S. K. Sethi and K. Subramanian, “Primordial magnetic fields in the post-
recombination era and early reionization,” MNRAS, vol. 356, pp. 778–788, Jan.
2005.

[273] T. Kahniashvili, Y. Maravin, A. Natarajan, N. Battaglia, and A. G. Tevzadze, “Con-
straining Primordial Magnetic Fields through Large-scale Structure,” ApJ, vol. 770,
p. 47, June 2013.

[274] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and
application to non-spherical stars.,” MNRAS, vol. 181, pp. 375–389, Nov. 1977.

[275] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis.,” AJ,
vol. 82, pp. 1013–1024, Dec. 1977.

[276] J. J. Monaghan, “Smoothed particle hydrodynamics.,” ARA&A, vol. 30, pp. 543–
574, Jan. 1992.

[277] M. J. Berger and P. Colella, “Local Adaptive Mesh Refinement for Shock Hydro-
dynamics,” Journal of Computational Physics, vol. 82, pp. 64–84, May 1989.

[278] G. L. Bryan and M. L. Norman, “Simulating X-Ray Clusters with Adaptive Mesh
Refinement,” in Computational Astrophysics; 12th Kingston Meeting on Theoret-
ical Astrophysics (D. A. Clarke and M. J. West, eds.), vol. 12 of Astronomical
Society of the Pacific Conference Series, p. 363, Jan. 1997.

[279] D. C. Collins, H. Xu, M. L. Norman, H. Li, and S. Li, “Cosmological Adaptive
Mesh Refinement Magnetohydrodynamics with Enzo,” ApJS, vol. 186, pp. 308–
333, Feb. 2010.

148



[280] L. Iapichino and J. C. Niemeyer, “Hydrodynamical adaptive mesh refinement sim-
ulations of turbulent flows - II. Cosmological simulations of galaxy clusters,” MN-
RAS, vol. 388, pp. 1089–1100, Aug. 2008.

[281] F. Vazza, G. Brunetti, A. Kritsuk, R. Wagner, C. Gheller, and M. Norman, “Tur-
bulent motions and shocks waves in galaxy clusters simulated with adaptive mesh
refinement,” A&A, vol. 504, pp. 33–43, Sept. 2009.

[282] L. Iapichino, C. Federrath, and R. S. Klessen, “Adaptive mesh refinement simula-
tions of a galaxy cluster merger - I. Resolving and modelling the turbulent flow in
the cluster outskirts,” MNRAS, vol. 469, pp. 3641–3655, Aug. 2017.

[283] D. J. Schwarz, “The first second of the Universe,” Annalen der Physik, vol. 12,
pp. 220–270, June 2003.

[284] T. Kahniashvili, A. Brandenburg, R. Durrer, A. G. Tevzadze, and W. Yin, “Scale-
invariant helical magnetic field evolution and the duration of inflation,” J. Cosmol-
ogy Astropart. Phys., vol. 2017, p. 002, Dec. 2017.

[285] T. Kahniashvili, A. Brandenburg, G. Gogoberidze, S. Mandal, and A. Roper Pol,
“Circular Polarization of Gravitational Waves from Early-Universe Helical Turbu-
lence,” arXiv e-prints, p. arXiv:2011.05556, Nov. 2020.
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B. W. Stappers, M. Tagger, Y. Tang, C. Tasse, S. ter Veen, R. Vermeulen, R. J.
van Weeren, R. A. M. J. Wijers, S. J. Wijnholds, M. W. Wise, O. Wucknitz,
S. Yatawatta, and P. Zarka, “Calibrating high-precision Faraday rotation measure-
ments for LOFAR and the next generation of low-frequency radio telescopes,”
A&A, vol. 552, p. A58, Apr. 2013.

[318] R. Braun, “The Square Kilometre Array: Current Status and Science Prospects,” in
IAU General Assembly, vol. 29, p. 2252814, Aug. 2015.
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